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Quantum mechanics from phys or math
Quantum mechanics (QM) is a well-established framework

1 Physicist:
From Schrödinger equation (diff eq), compute physical
phenomena.

2 Mathematician:
Construct infinite-dim Hilbert space with unbounded operators.

Works well for harmonic oscillator, . . . (stable potentials)

Also interesting in quasi-stationary potentials with developments
of non-perturbative approaches

Related to
▶ scattering theory (how about hep?),
▶ nuclear physics,
▶ open system,
▶ non-Hermitian QM,

large gap between phys and math
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Introduction to “Resonance”

(Usual) Quasi-stationary state in quantum system
▶ There are some local minima (vacua); one decays to an other.
▶ After decaying, finally stable ground state.
▶ Eventually bound state beyond perturbation theory.

Unstable state after decay: Resonant state

bound state

resonant state

threshold

▶ Simply say, plane wave in asymptotic region
⋆ But, discrete and complex: k = kR − ikI ∈ C.
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Distribution of each state

Riemann surface of complex E -plane

E

bound (1st)

scattering

resonance (2nd)

anti-resonance

Complex energy E = Er − i Γ
2
in the 4th quadrant

(Resonant energy Er , decay width Γ)
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Subtleties of resonance physics

Resonance appears quite universally!
▶ Traditional viewpoint: pole of S-matrix

Some puzzling points:
▶ Non-normalizable (divergence of norm)

⋆ e ikr = e ikR r+kI r → ∞
▶ Completeness?

⋆ Spectral theory
?→

∑
bound |ψB⟩⟨ψB |+

∫
scattering

|ψS⟩⟨ψS | = 1

▶ What is the wave function itself?
⋆ Complex probability; what is expectation value?
⋆ Transition cross-section?

Some regularization schemes in phenomenological senses
▶ Zel’dovich regularization, complex scaling method, rigged Hilbert

space, etc.

▶ No transparent relation has been found.
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Prescription of complex scaling

Complex scaling method
Radial direction r → re iθ

ℜ(E )

ℑ(E )

2θ

bound

scattering

resonance

Extended Hilbert space with
resonance and θ

Normalizable resonant wave
function ψR ∼ “bound”∑

B |ψB⟩⟨ψB |
+
∑

Rθ
|ψRθ

⟩⟨ψ̃Rθ
|

+
∫
Sθ
|ψSθ⟩⟨ψ̃Sθ | = 1

[See Myo–Kikuchi–Masui–Katō ’14]

Works well owing to sophisticated mathematical background
[Aguilar—Balslev—Combes (ABC) theorem AC ’71, BC ’71]

Physical meaning??? What is observed???
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Resurgence approach to quasi-stationary states
E.g., for double well potential, perturbation theory suffers from

x
other (false) vacuum

Perturbative vac decays w/ decay rate Γ
→Resurgent asymptotic series

Complex energy of resonance: E = Er − i Γ
2

(Resonant energy Er , decay width Γ)

E.g., V (x) = U0
cosh2 β(x−a)

+ U0
cosh2 β(x+a)

Can resurgence theory overcome difficulties as non-perturbative
formulation of QM?
If so, essence in “∀QM” = analyticity in resurgence

▶ Quite transparent and precise!!!
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More issue: inverted Rosen–Morse potential
Potential giving resonance

V (x) = U0

cosh2 β(x−a)
+ U0

cosh2 β(x+a)

↓
V (x) = U0/cosh

2 βx
Exact solution of Schrödinger equation is given by

ψ(x) = (1− ξ2)−
ik
2β F

(
− ik

β
− s,− ik

β
+ s + 1,− ik

β
+ 1,

1− ξ

2

)
F : Gauss hypergeometric function, ξ = tanhβx , k =

√
2mE/ℏ,

s = 1
2
(−1 +

√
1− 8mU0/β2ℏ2)

Resonant energy

ER
n =

ℏ2β2

8m

[√
8mU0

β2ℏ2
− 1− i(2n + 1)

]2

Barrier resonance: localized state at potential bump (?)
▶ Not intuitively clear why this is happening.
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WKB ansatz
Consider a Schrödinger equation(

− d2

dx2
+ ℏ−2Q(x)

)
ψ = 0, Q(x) = 2[V (x)− E ]

Introduce WKB ansatz as a formal power series

ψ(x , ℏ) = e
∫ x S(x ′,ℏ)dx ′ , S(x , ℏ) =

1

ℏ
S−1(x) + S0(x) + ℏS1(x) + . . . ,

and substitute this into the equation; we have a recursive
equation of Si

We have two solutions because of the leading-order equation

S2
−1 = Q ⇒ S−1 = S±

−1 ≡ ±
√
Q.

Solutions are ψ± = e
∫
S± ∼ e±

1
ℏ
∫ √

Q .
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Borel resummation
Borel resummation: summing divergent asymptotic series

f (λ) ∼
∑∞

k=0
fkλ

k+1 with fk ∼ akk! as k → ∞

⇓ Borel transform

B(u) ≡
∞∑
k=0

fk
k!
uk =

1

1− au
(Pole singularity at u = 1/a).

The Borel sum is given by

f (λ) ≡
∫ ∞

0

du B(u)e−u/λ.

a < 0 (alternating series) → convergent

a > 0 → ill-defined due to the pole

⇒ Imaginary ambiguity ∼ ±e−1/(aλ)

Re

Im

0

u

×
u = 1/a

∓iπ
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Stokes phenomena, Stokes geometry
WKB ansatz is also asymptotic series; where is it Borel
summable?

Integral contour includes ∓
∫ x

dx ′
√
Q for ψ±

Stokes curve :

{
x

∣∣∣∣Im∫ x

a

dx ′
√
Q = 0,where Q(x = a) = 0

}

▶ a: turning point.
▶ Not on Stokes curve, Borel summable (analytically continuable).
▶ Across a Stokes curve, solution suddenly changes.
▶ ψ± is dominant with Re

∫ x
a dx ′

√
Q ≷ 0.

+
Q = 0

Im
∫ x

a

√
Qdx = 0

ψ+ → ψ+ + iψ−

analytic continuation
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Quantization condition from normalizability
(Usual) QM: normalizable from x → −∞ to x → ∞

▶ E.g., Harmonic oscillator

−

+

+ +

+

−
Q = 0

Im
∫ x √

Qdx = 0 A-cycle:
∮ √

Q(x)

x

▶ ψfinal = (analytic continuation, Stokes pheno)× ψinitial

▶ Non-normalizable solution vanishes: ψ−
initial ̸→ ψ+

finial

1 + A = 1 + eℏ
−1

∮ √
Q = 0 ⇒ E = ℏ

(
n +

1

2

)
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How to see resonant state from exact WKB
Resonant state: quasi-stable in complex region

▶ V = −x2 vs V = 1/ cosh2 x

Re x

Im x

−

+

+

−

+

−

Im ℏ > 0
ImE > 0
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Quantization path and leading order estimate

Normalizable path:

Re x

Im x

−

+

+

−
+

−

+
A

Barrier resonant energy from exact WKB analysis (leading)
▶ A-cycle ∫ cosh−1

√
1
E

− cosh−1
√

1
E

√
2

(
1

cosh2 x
− E

)
=

√
2π(1 +

√
E )

quantization condition: 1− A = 0 E =

(
1− in√

2

)2
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Backup: Rigorous estimate = exact solution
A = 1: F

(
− ik

β − s,− ik
β + s + 1,− ik

β + 1, 1−|ξ|
2

)
F
(
− ik

β − s,− ik
β + s + 1,− ik

β + 1, 1+|ξ|
2

)
2

= 1,

where |ξ| = tanh(β cosh−1
√
U0/E ).

Here, we use the formula of the hypergeometric function as

F

(
−
ik

β
− s,−

ik

β
+ s + 1,−

ik

β
+ 1,

1± |ξ|
2

)
= AF

(
−

ik

2β
−

s

2
,−

ik

2β
+

s + 1

2
,
1

2
, |ξ|2

)
∓BF

(
−

ik

2β
−

s − 1

2
,−

ik

2β
+

s

2
+ 1,

3

2
, |ξ|2

)
,

where

A =
Γ
(
− ik

β
+ 1

)
Γ
(
1
2

)
Γ
(
− ik

2β
− s−1

2

)
Γ
(
− ik

2β
+ s

2
+ 1

) , B =
Γ
(
− ik

β
+ 1

)
Γ
(
− 1

2

)
Γ
(
− ik

2β
− s

2

)
Γ
(
− ik

2β
+ s+1

2

) .

A = 0, B = 0: odd/even number of nodes
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What is problematic in naive path?

Re x

Im x

−a a

(−a, 2πn)

(a, 2πn)

(−a, 2π(n + 1))

(a, 2π(n + 1))

e In = e
∫
Sodd

e−In

e Ii∞ = e
∫
Sodd

e−Ii∞

e I∞ = e
∫
Sodd

e−I∞

A-cycle

I∞ is divergent

(depending on concrete path)
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Regularization schemes
Zel’dovich transformation: S = e−ϵx2 [’61, Berggren ’68]

Hψ = Eψ → HSψS = EψS , ψS ≡ Sψ, HS ≡ SHS−1.

▶ We find HS = H − ℏ2ϵ
m

(
d
dx x + x d

dx

)
▶ Now, e I∞ → e

∫
(Sodd−2ϵx) becomes finite.

Complex scaling by θ rotates the Stokes graph as

Re x

Im x

−ae iθ

ae iθ

θ

e I
′
∞ = e

∫
Sodd

−∞ e−I ′∞

∞

▶ Now, e I∞ → e I
′
∞ becomes finite.
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Backup: Rigged Hilbert space
We introduce

DR
ε = {x ∈ C|ε > 0, lim

r→±∞
|x − r | < ε}

▶ DR
ε is the most crucial singular region.

if x ∈ C \ DR
ε , the Hilbert space is well-defined, Hε

▶ Def. of norm and inner product is quite different!
▶ Resonance is included as “bound” state.

(Operator algebra) Set of operators {Ai} where Ai is defined on
D(Ai) ⊂ Hε; then let us introduce the dense subspace

Φ ≡ ∩iD(Ai) ⊆ Hε.

The range is defined by the limit as ε→ 0, say, Φ×

We find the Gelfand multiplet

Φ ⊆ Hε ⊂ Φ×,

and (Hε,Φ) is the rigged （艤装） Hilbert space.
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Backup: Scattering theory

energy scale

Re x

Im x

− −

bound

threshold

Re x

Im x
(−)

−

resonance

e ikx scattering

Below threshold: Bound states

Above threshold: Resonance & continuum spectrum
▶ Read transmission/reflection coefficient from

monodromy&analytic continuation
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Summary

We develop a unified framework for analyzing quantum
mechanical resonances using exact WKB method

▶ Serving as a non-perturbative formulation of QM.
▶ Incorporating the Zel’dovich regularization, the complex scaling

method, and the rigged Hilbert space.
▶ Demonstrated by examining the inverted Rosen–Morse

potential.

Future works:
▶ Realistic potential (E.g., 1/ cosh2(x − a) + 1/ cosh2(x + a))
▶ Numerical approach (Quantization cond → Estimate cycles)
▶ Higher dim???
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Backup: Resonant state and S-matrix
Let φl be regular solution of radial Schrödinger equation

▶ φl is subject to

φl(k, r)
r→0→ jl(kr) jl : Spherical Bessel function

with angular momentum l .

At r → ∞, linear combination of Hankel functions hl :

φl(k , r) → Fl(k)h
−
l (kr)−F∗

l (k)h
+
l (kr) Fl : Jost function

r

h+

h−: incident wave forbidden

S-matrix is written in terms of Jost function

Sl(k) =
F∗

l (k)

Fl(k)
→ ∞ pole singularity

Some kind of scattering of multiple particles
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Backup: What is problematic in naive path?

Total quantization condition is given by

0 = e
∫ a+∞
a+i∞ dxSodd

[
∞∏
n=0

e
∫ a+2πi(n+1)/β
a+2πin/β

dxSodd

]
(1− A)

×

[
∞∏
n=0

e
∫−a−2πin/β
−a−2πi(n+1)/β

dxSodd

]
e
∫−a−i∞
−a−∞ dxSodd

?
= e

∫−a
a dxSodd(1− A),

▶ Sodd = 1
ℏS−1 + ℏS1 + . . .

Naively, any factor at infinity appears to cancel against each
other.
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