

量子測定下の非ユニタリーダイナミクスの 対称性とトポロジー

川畑幸平(東京大学物性研究所)

Phys. Rev. Lett. 134, 140401 (2025)

arXiv: 2412.06133

量子測定に誘起された非ユニタリー動的量子相転移

物性物理・統計物理・量子情報物理の境界領域での新しい相転移・臨界現象

場の理論の新しい物理的応用(非線形シグマ模型)

PRL 134, 140401 (2025) & 2412.06133

Zhenyu Xiao (Peking University → Princeton University)

Tomi Ohtsuki (Sophia University)

Outline

1. Introduction & Motivation

2. Topology of Monitored Quantum Dynamics

3. Universal Stochastic Equations of Monitored

Quantum Dynamics

Monitored quantum dynamics

Unitary quantum dynamics

propagation of quantum correlations and entanglement scrambling and/or thermalization

Quantum measurements

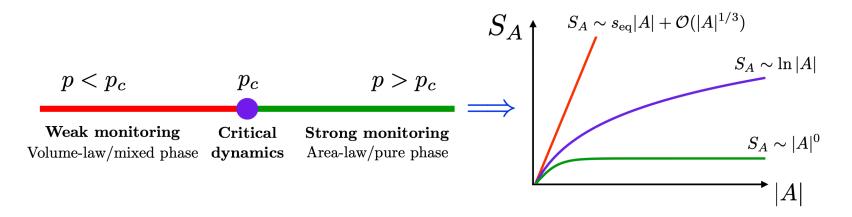
nonunitarity freezes quantum dynamics (i.e., quantum Zeno effect) nonequilibrium steady states

- **☆ Competition between unitary dynamics and measurements?**
 - dynamical phase transitions unique to open quantum systems

Measurement-induced phase transitions 2/40

Measurement-induced phase transitions

Skinner *et al.*, PRX **9**, 031009 (2019) Li *et al.*, PRB **98**, 205136 (2018)



Fisher et al., Annu. Rev. Condens. Matter Phys. 14, 335 (2023)

Purification transitions: mixed vs pure phases

Gullans & Huse, PRX **10**, 041020 (2020)

(connection with quantum error correction)

Anderson localization

Periodic crystals

electrons are delocalized through crystals (i.e., Bloch theorem)

ballistic/diffusive transport phenomena (i.e., metals)

Spatial disorder

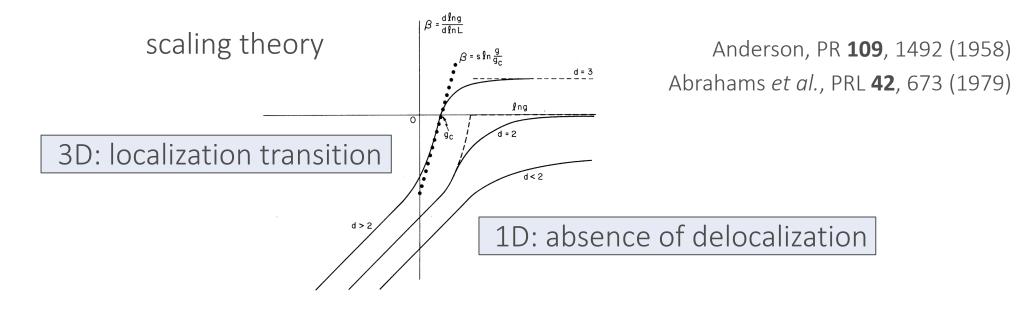
Anderson, PR **109**, 1492 (1958)

localizes (electronic) waves (i.e., Anderson localization) prevents thermalization and diffusion (i.e., insulators)

- **☆ Competition between coherent dynamics and disorder?**
 - phase transitions unique to disordered systems (i.e., Anderson transitions)

Anderson transitions

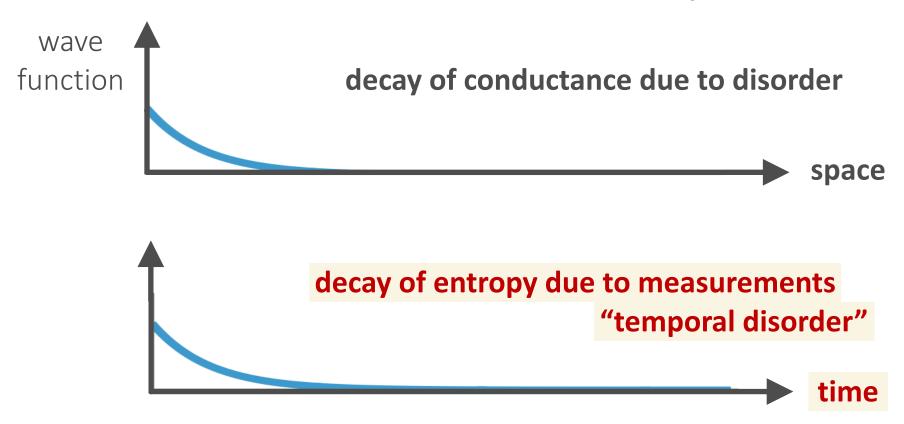
Anderson transitions: localization transitions induced by disorder



Universality classes of Anderson transitions are determined by

- (1) Symmetry (especially, discrete internal symmetry)
- (2) Spatial dimensions
- (3) Topology (e.g., quantum Hall transitions)

☆ Measurement-induced phase transitions for free fermions can be considered as Anderson transitions in spacetime!



Can we justify this connection and clarify differences?

Nonlinear sigma models

☆ Both MIPT and AT are described by the same effective field theory.
(for free fermions) (nonlinear sigma model)

$$S_n[Q] = \frac{1}{t} \sum_{\mu=x,t} \int dx dt \operatorname{tr} \left[(\partial_{\mu} Q^{\dagger})(\partial_{\mu} Q) \right]$$

Jian *et al.*, arXiv:2302.09094 Fava *et al.*, PRX **13**, 041045 (2023) Poboiko *et al.*, PRX **13**, 041046 (2023)

 $\begin{cases} \text{complex fermions}: Q \in \mathcal{U}(R) \to \text{NO transitions in (1+1)-D} \\ \text{Majorana fermions}: Q \in \mathcal{O}(R) \to \text{transitions in (1+1)-D} \end{cases}$

unique scaling of steady-state entanglement entropy

☆ Different replica indices

 $MIPT: R \to 1, \quad AT: R \to 0$

different critical phenomena

$$S_{\alpha} \sim \frac{1+\alpha}{96\alpha} \left(\log L\right)^2$$

Motivation

How can we connect the field theory description to microscopic models of monitored quantum dynamics?

$$S_n[Q] = \frac{1}{t} \sum_{\mu} \int d^d \boldsymbol{x} dt \text{ tr} \left[(\partial_{\mu} Q^{\dagger})(\partial_{\mu} Q) \right] + \underline{\text{(topological terms)}}$$

What are the roles of symmetry and topology in monitored quantum dynamics?

How can we classify universality classes of measurement-induced phase transitions?

Results (1)

We develop the tenfold classification of symmetry and topology for monitored free fermions.

We establish the bulk-boundary correspondence: spacetime topology leads to anomalous boundary states.

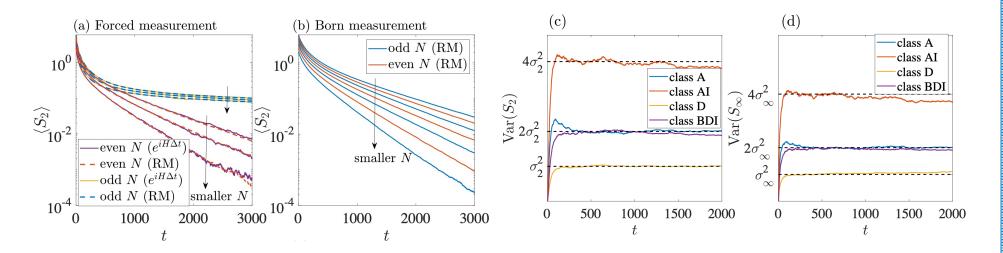
Class		d+1=1	d+1=2	d+1=3	d+1=4	d+1=5	d+1=6	d+1=7	d+1=8
A	\mathcal{C}_1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
AIII	\mathcal{C}_0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	$\mathbb Z$
AI	\mathcal{R}_1	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2
BDI	\mathcal{R}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2
D	\mathcal{R}_3	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb Z$	0	0	0	$2\mathbb{Z}$	0
DIII	\mathcal{R}_4	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb Z$	0	0	0	$2\mathbb{Z}$
AII	\mathcal{R}_5	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb Z$	0	0	0
CII	\mathcal{R}_6	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb Z$	0	0
\mathbf{C}	\mathcal{R}_7	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb Z$	0
CI	\mathcal{R}_0	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}

Xiao and **Kawabata**, arXiv:2412.06133

Results (2)

We derive universal stochastic equations of monitored free fermions in 0+1 dimension.

We find universal purification dynamics and entropy fluctuations.



Xiao, Ohtsuki & **Kawabata**, PRL **134**, 140401 (2025)

Topology of Monitored Quantum Dynamics

Xiao & **Kawabata**, arXiv:2412.06133

Altland-Zirnbauer symmetry

☆ 3-fold symmetry class by Wigner & Dyson

 Wigner (1959) Dyson, J. Math. Phys. **3**, 1199 (1962)

☆ 10-fold symmetry class by Altland & Zirnbauer

Altland & Zirnbauer, PRB **55**, 1142 (1997)

particle hole $\mathcal{C}H^*\mathcal{C}^{-1} = -H \qquad \text{anti-unitary}$ chiral $\Gamma H \Gamma^{-1} = -H \qquad \text{unitary}$ (sublattice)

Universality

Random matrix theory, Anderson transitions, topological phases,

Topological insulators and superconductors

General and comprehensive theoretical framework of TIs and TSCs:

Periodic table based on spatial dimension and symmetry

				Dime	ension							
Class	TRS	PHS	CS	0	1	2	3	4	5	6	7	
A	0	0	0	\mathbb{Z}	0	\mathbb{Z}	Qı	uant	:um	Hall	ins	ulator
AIII	0	0	1	0	\mathbb{Z}	0	Z	0	\mathbb{Z}	0	\mathbb{Z}	
AI	+1	0	0	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	
BDI	+1	+1	1	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	
D	0	+1	0	\mathbb{Z}_2	\mathbb{Z}_2	Kit	aev,	/Ma	jora	na c	hair	า
DIII	-1	+1	1	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	
AII	-1	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	Qu	antı	um s	spin	Hall	insulator
CII	-1	-1	1	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	
\mathbf{C}	0	-1	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	
CI	+1	-1	1	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	

Schnyder, Ryu, Furusaki & Ludwig, PRB **78**, 195125 (2008)

Kitaev, AIP Conf. Proc. **1134**, 22 (2009)

Generic quantum operation (CPTP map)

$$ho \longmapsto
ho' = \sum_i K_i
ho K_i^\dagger$$
 Kraus operator

Open quantum dynamics (Markovian)

$$\rho\left(t\right) = \sum_{i_1, i_2, \cdots, i_n} K_{i_n} \cdots K_{i_1} \rho_0 K_{i_1}^{\dagger} \cdots K_{i_n}^{\dagger}$$

This is the average of "measurement outcomes" (i_1,\cdots,i_n)

quantum trajectory
$$K_{i_n}\cdots K_{i_1}
ho K_{i_1}^\dagger \cdots K_{i_n}^\dagger$$

Quantum trajectory

Quantum trajectory
$$|\psi_0\rangle \longmapsto |\psi_t\rangle \propto K_t K_{t-\Delta t} \cdots K_{\Delta t} |\psi_0\rangle$$
 =: $K_{[0,t]}$

Kraus operators incorporate both random unitary evolution and stochastic nonunitary measurements.

- $-\frac{\rm Born\ measurements}{\left(\|K_{[0,t]}\,|\psi_0\rangle\,\|^2\right)}$ dynamics depends on measurement probabilities at each time
- Forced measurements
 dynamics evolves according to prior (postselected) probabilities

NOTE: Replica limit for nonlinear sigma models: Jian et al., arXiv:2302.09094 Born: $R \to 1$, Forced: $R \to 0$ Fava et al., PRX 13, 041045 (2023) Poboiko et al., PRX 13, 041046 (2023)

Purification dynamics of Gaussian mixed states of N complex fermions:

- Unitary dynamics $U_t \in \mathrm{U}\left(N\right)$
- Continuous measurement of the particle number n_i

$$M_t = \operatorname{diag}\left(e^{\epsilon_i}\right)$$

$$\epsilon_{i} = \begin{cases} (2\langle n_{i}\rangle_{t} - 1)\gamma dt + \sqrt{\gamma} dW_{t}^{i} & \text{(Born measurement)} \\ \sqrt{\gamma} dW_{t}^{i} & \text{(forced measurement)} \end{cases}$$

measurement strength Wiener process $\langle dW_t^i \rangle = 0, \langle dW_t^i dW_t^j \rangle = \delta_{ij} dt$

cumulative Kraus operators (single-particle quantum trajectory)

$$K_{[0,t]} = (M_t U_t) \cdots (M_{\Delta t} U_{\Delta t})$$

Non-Hermitian dynamical generators

Over an infinitesimal time interval $[t, t+\Delta t]$

$$|\psi_{t+\Delta t}\rangle \propto K_t |\psi_t\rangle$$

Stochastic Schrödinger equation

$$L_t |\psi_t\rangle = 0, \quad L_t := \partial_t - H_t, \quad e^{H_t \Delta t} := K_t$$

effective non-Hermitian "Hamiltonian"

 $\stackrel{\wedge}{\sim}$ The open quantum dynamics is encoded in K_t or L_t

Relationship with disordered electrons 15/40

Monitored dynamics
Disordered electrons

Kraus operators
$$K$$
 transfer matrix T

"Hamiltonian" LHamiltonian H

Single-particle Schrödinger equation of disordered electrons

$$\begin{pmatrix} \psi_{x+1} \\ \psi_x \end{pmatrix} = T_x \begin{pmatrix} \psi_x \\ \psi_{x-1} \end{pmatrix}$$

Kramer et al., Int. J. Mod. Phys. B 24, 1841 (2010)

Localization length is quantified by
$$\left\| \prod_{x=1}^L T_x \right\| \sim e^{-L/\xi}$$

 \swarrow Kraus operators K_t : transfer matrices in the temporal direction

$$|\psi_{t+\Delta t}\rangle \propto K_t |\psi_t\rangle$$

Purification timescale is quantified by $\left\|\prod_{t=1}^{T}K_{t}\right\|\sim e^{-T/ au}$

L_t serves as an effective non-Hermitian Hamiltonian

Symmetry of Kraus operators (1)

Kraus operators inherently incorporate spacetime randomness.

spatial disorder & temporal noise (intrinsic to quantum measurements)

Symmetry preserved by the product of Kraus operators is only relevant to the monitored quantum dynamics.

$$(K_{[0,t]} := K_t K_{t-\Delta t} \cdots K_{\Delta t})$$

$$\mathcal{T}K_t^*\mathcal{T}^{-1} = K_t \quad (\mathcal{T}\mathcal{T}^* = \pm 1)$$

$$\mathcal{C}(K_t^T)^{-1}\mathcal{C}^{-1} = K_t \quad (\mathcal{C}\mathcal{C}^* = \pm 1)$$

$$\Gamma(K_t^{\dagger})^{-1}\Gamma^{-1} = K_t \quad (\Gamma^2 = 1)$$

Symmetry of Kraus operators (2)

• Complex conjugation is preserved for the product of K_t

$$\mathcal{T}K_t^*\mathcal{T}^{-1} = K_t \longrightarrow \mathcal{T}K_{[0,t]}^*\mathcal{T}^{-1} = K_{[0,t]}$$
$$(K_{[0,t]} := K_t K_{t-\Delta t} \cdots K_{\Delta t})$$

• Transposition/inversion is NOT preserved for the product of K_t

$$K_t^{T/-1} = K_t$$
 \longrightarrow $K_{[0,t]}^{T/-1} = K_{\Delta t} \cdots K_{t-\Delta t} K_t \neq K_{[0,t]}$

Temporal direction is reversed

Combination of transposition and inversion is preserved

$$C(K_t^T)^{-1}C^{-1} = K_t$$
$$\Gamma(K_t^{\dagger})^{-1}\Gamma^{-1} = K_t$$

Symmetry of dynamical generators

Symmetry of Kraus operators:

$$\mathcal{T}K_t^*\mathcal{T}^{-1} = K_t \quad (\mathcal{T}\mathcal{T}^* = \pm 1)$$

$$\mathcal{C}(K_t^T)^{-1}\mathcal{C}^{-1} = K_t \quad (\mathcal{C}\mathcal{C}^* = \pm 1)$$

$$\Gamma(K_t^{\dagger})^{-1}\Gamma^{-1} = K_t \quad (\Gamma^2 = 1)$$

→ Symmetry of effective dynamical generators:

$$\mathcal{T}L_t^*\mathcal{T}^{-1}=L_t$$
 $(\mathcal{T}\mathcal{T}^*=\pm 1)$ "time-reversal symmetry" $\mathcal{C}L_t^T\mathcal{C}^{-1}=-L_t$ $(\mathcal{C}\mathcal{C}^*=\pm 1)$ "particle-hole symmetry" $\Gamma L_t^\dagger \Gamma^{-1}=-L_t$ $(\Gamma^2=1)$ "chiral symmetry"

Tenfold internal symmetry classes of monitored dynamics

$\stackrel{\wedge}{\sim}$ Tenfold symmetry classification of K and L

(single-particle Kraus operators & associated dynamical generators)

(noncompact type)

Class	TRS \mathcal{T}	PHS \mathcal{C}	$CS \Gamma$	Classifying space (K)	Classifying space (L)
A	0	0	0	$\mathrm{GL}\left(N,\mathbb{C}\right)/\mathrm{U}\left(N\right)\cong\mathcal{C}_{1}$	\mathcal{C}_1 (AIII)
AIII	0	0	1	$\mathrm{U}\left(N,N\right)/\mathrm{U}\left(N\right)\times\mathrm{U}\left(N\right)\cong\mathcal{C}_{0}$	\mathcal{C}_0 (A)
AI	+1	0	0	$\operatorname{GL}(N,\mathbb{R})/\operatorname{O}(N) \cong \mathcal{R}_7$	\mathcal{R}_1 (BDI)
BDI	+1	+1	1	$O(N, N)/O(N) \times O(N) \cong \mathcal{R}_0$	\mathcal{R}_2 (D)
D	0	+1	0	$\mathrm{O}\left(N,\mathbb{C}\right)/\mathrm{O}\left(N\right)\cong\mathcal{R}_{1}$	$\mathcal{R}_3 \; ext{(DIII)}$
DIII	-1	+1	1	$O^*(2N)/U(N) \cong \mathcal{R}_2$	\mathcal{R}_4 (AII)
AII	-1	0	0	$\mathrm{U}^{*}\left(2N\right)/\mathrm{Sp}\left(N\right)\cong\mathcal{R}_{3}$	\mathcal{R}_5 (CII)
CII	-1	-1	1	$\operatorname{Sp}(N, N)/\operatorname{Sp}(N) \times \operatorname{Sp}(N) \cong \mathcal{R}_4$	\mathcal{R}_6 (C)
\mathbf{C}	0	-1	0	$\operatorname{Sp}\left(N,\mathbb{C} ight)/\operatorname{Sp}\left(N ight)\cong\mathcal{R}_{5}$	\mathcal{R}_7 (CI)
$\overline{\text{CI}}$	+1	-1	1	$\operatorname{Sp}(N,\mathbb{R})/\operatorname{U}(N) \cong \mathcal{R}_6$	\mathcal{R}_0 (AI)

Xiao and **Kawabata**, arXiv:2412.06133

cf. tensor-network formulation: Jian, Bauer, Keselman & Ludwig, PRB 106, 134206 (2022)

Time-reversal symmetry

Physical time-reversal symmetry: $\mathcal{T}K_t^*\mathcal{T}^{-1}=K_{\underline{-t}}$ time reversal

NOT exactly respected due to temporal noise

(may be respected on average, though)

"time-reversal symmetry" more relevant to monitored dynamics:

$$\mathcal{T}K_t^*\mathcal{T}^{-1} = K_t$$

Behaves as "internal symmetry" in spacetime

Topology is captured by homotopy groups of classifying spaces

$$\pi_0 \left(\mathcal{C}_{s-(d+1)} \right), \pi_0 \left(\mathcal{R}_{s-(d+1)} \right)$$

Classifying spaces (determined solely by symmetry)

Connection with point-gap topology

Gong et al., PRX **8**, 031079 (2018)

Kawabata et al., PRX **9**, 041015 (2019)

$$\tilde{L}_t := \begin{pmatrix} 0 & L_t \\ L_t^{\dagger} & 0 \end{pmatrix}$$

Non-Hermitian topology of L_t = Hermitian topology of \tilde{L}_t

Topological classification of non-Hermitian dynamical generators L

-	1		1 •	. 1	١.
(5	pacetime	dimer	nsions)
١	\cup	pacetime	anne	1313113	/

Class		d+1=1	d+1=2	d+1=3	d+1=4	d+1=5	d+1=6	d+1=7	d+1=8
A	\mathcal{C}_1	\mathbb{Z}	0	$\mathbb Z$	0	$\mathbb Z$	0	\mathbb{Z}	0
AIII	\mathcal{C}_0	0	\mathbb{Z}	0	\mathbb{Z}	0	$\mathbb Z$	0	$\mathbb Z$
AI	\mathcal{R}_1	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	$\overline{\mathbb{Z}_2}$
BDI	\mathcal{R}_2	\mathbb{Z}_2	$\mathbb Z$	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2
D	\mathcal{R}_3	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb Z$	0	0	0	$2\mathbb{Z}$	0
DIII	\mathcal{R}_4	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb Z$	0	0	0	$2\mathbb{Z}$
AII	\mathcal{R}_5	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb Z$	0	0	0
CII	\mathcal{R}_6	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
\mathbf{C}	\mathcal{R}_7	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb Z$	0
CI	\mathcal{R}_0	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}

Xiao and **Kawabata**, arXiv:2412.06133

Bott periodicity in K-theory

2: complex classes (A, AIII)

8: real classes (AI, BDI, D, DIII, AII, CII, C, CI)

Steady-state topology

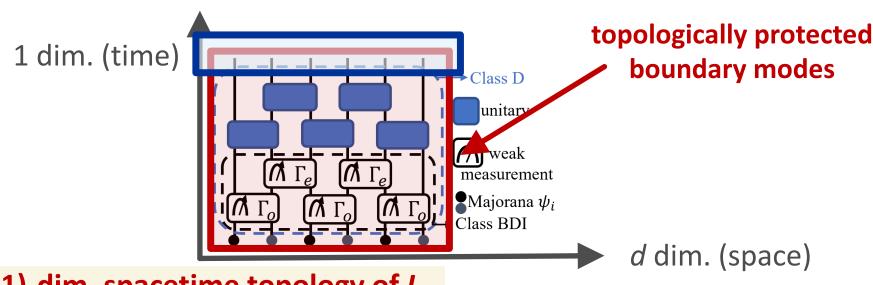
Topological classification of L_t in d+1 dimensions

= Topological classification of Hermitian systems in *d* dimensions

(ensured by dimensional reduction in K-theory)

Appendix E in **Kawabata** *et al.*, PRX **9**, 041015 (2019)

Correspondence of spacetime topology and steady-state topology

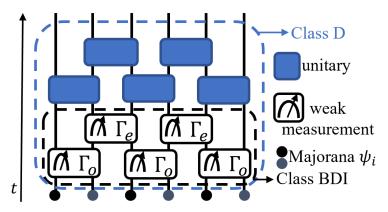


(d+1)-dim. spacetime topology of L_t

(1+1)-D classes D & BDI

Monitored Majorana fermions in one spatial dimension

(a) Monitored Majorana chain



Nahum *et al.*, PRR **2**, 023288 (2020) Merritt *et al.*, PRB **107**, 064303 (2023) Fava *et al.*, PRX **13**, 041045 (2023) measurements of fermion parity

$$\hat{K}_{2i-1,\pm} \propto e^{\pm i\Gamma (1+\Delta) \,\hat{\psi}_{2i-1} \hat{\psi}_{2i}/2}$$

$$\hat{K}_{2i,\pm} \propto e^{\pm i\Gamma (1-\Delta) \,\hat{\psi}_{2i} \hat{\psi}_{2i+1}/2}$$

random unitary dynamics

$$\hat{U}_{2i-1} = e^{\theta_{2i-1}\hat{\psi}_{2i-1}\hat{\psi}_{2i}/2}$$

$$\hat{U}_{2i} = e^{\theta_{2i}\hat{\psi}_{2i}\hat{\psi}_{2i+1}/2}$$

Without unitary dynamics: class BDI (particle-hole & chiral)

With unitary dynamics: class D (particle-hole)

inherent in Majorana fermions

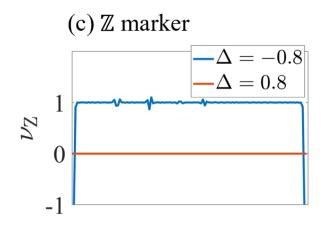
(Chern number of L_t = 1D winding number of H_t) Measurement-only dynamics

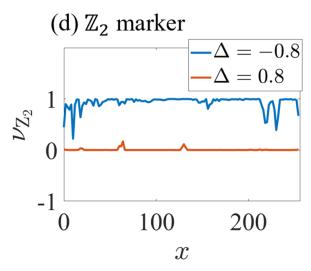
Class		d+1=1	d+1=2	+1 = 3	d+1=4	d+1=5	d+1=6	d+1=7	d + 1 = 8
A	\mathcal{C}_1	\mathbb{Z}	0	\mathbb{Z}	0	$\mathbb Z$	0	$\mathbb Z$	0
AIII	\mathcal{C}_0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
AI	\mathcal{R}_1	\mathbb{Z}		0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2
BDI	\mathcal{R}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2
D	\mathcal{R}_3	\mathbb{Z}_2		$\mathbb Z$	0	0	0	$2\mathbb{Z}$	0
DIII	\mathcal{R}_4	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb Z$	0	0	0	$2\mathbb{Z}$
AII	\mathcal{R}_5	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb Z$	0	0	0
CII	\mathcal{R}_6	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb Z$	0	0
\mathbf{C}	\mathcal{R}_7	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb Z$	0
CI	\mathcal{R}_0	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}

Class		d+1=1	d+1=2	d+1=3	d+1=4	d+1=5	d+1=6	d+1=7	d+1=8
A	\mathcal{C}_1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
AIII	\mathcal{C}_0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
AI	$\overline{\mathcal{R}_1}$	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2
BDI	\mathcal{R}_2	\mathbb{Z}_2	7	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2
D	\mathcal{R}_3	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0
DIII	\mathcal{R}_4	0	7	\mathbb{Z}_2	$\mathbb Z$	0	0	0	$2\mathbb{Z}$
AII	\mathcal{R}_5	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb Z$	0	0	0
CII	\mathcal{R}_6	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb Z$	0	0
\mathbf{C}	\mathcal{R}_7	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb Z$	0
CI	\mathcal{R}_0	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}

Measurements with unitary dynamics

Topological invariants





$$\begin{cases} \mathbb{Z} \text{ topological invariant} & (\text{class BDI}) \\ \mathbb{Z}_2 \text{ topological invariant} & (\text{class D}) \end{cases}$$

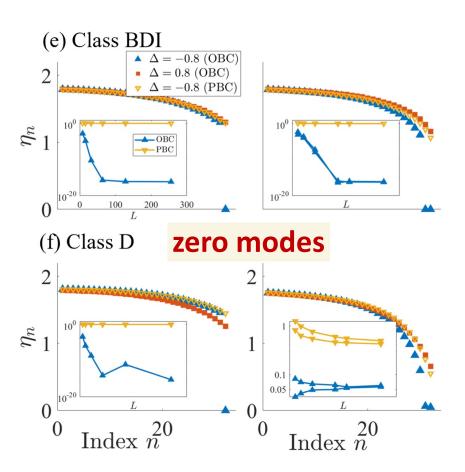
Quantization of local topological marker

$$\nu = \begin{cases} 1 & (\Delta < 0) \\ 0 & (\Delta > 0) \end{cases}$$

Mondragon-Shem *et al.*, PRL **113**, 046802 (2014) Hannukainen *et al.*, PRL **129**, 277601 (2022)

Zero modes

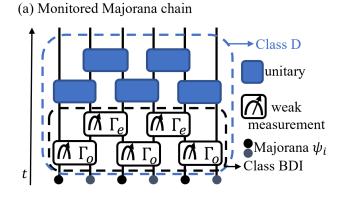
Topology leads to zero modes in the singular-value spectrum!



 ηt : logarithm of singular values of $K_{[0,t]}$

Majoranas at edges are isolated in the topological phase

Topologically protected slow purification (not exponential but algebraic)



 $\stackrel{\wedge}{\sim}$ Zero modes are ensured by spacetime topology of L_t

Topological phase transitions

ightrightharpoonup Topology is the origin of the measurement-induced phase transition

Perturbative expansion of the nonlinear sigma model for class BDI

$$eta\left(t
ight)=d-1-4t^{3}+\mathcal{O}\left(t^{4}
ight) \qquad (t\geq0)$$
 Hikami, Phys. Lett. B **98**, 208 (1981) Wegner, Nucl. Phys. B **316**, 663 (1989) $eta<0 \qquad (d\leq1)$

No phase transitions for 1+1 dimensions

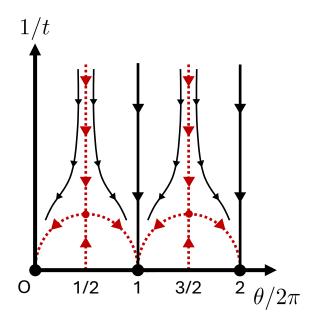
However, numerical simulations of lattice models demonstrate the measurement-induced phase transition.

It requires a topological term!

Nahum *et al.*, PRR **2**, 023288 (2020) Merritt *et al.*, PRB **107**, 064303 (2023) Fava *et al.*, PRX **13**, 041045 (2023)

Topological θ term

$\stackrel{\wedge}{\sim}$ Z-classified topology: θ term in the nonlinear sigma model



cf. Chen, <u>Kawabata</u>, Kulkarni & Ryu, PRB **111**, 054203 (2025)

$$S_n[Q] = \frac{1}{t} \sum_{\mu=x,t} \int dx dt \ \mathrm{tr} \left[(\partial_\mu Q^\dagger)(\partial_\mu Q) \right] + \theta N[Q]$$
 topological θ term

$$N[Q] := \sum_{\mu,\nu=x,t} \varepsilon^{\mu\nu} \int \frac{dxdt}{16\pi} \operatorname{tr} \left[Q(\partial_{\mu}Q)(\partial_{\nu}Q) \right]$$

$$Q \in O(2)/U(1)$$

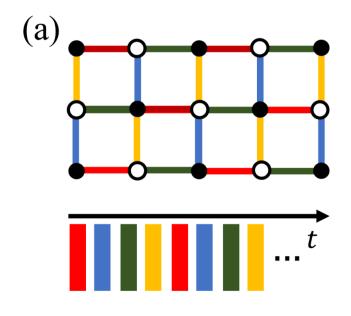
specified solely by symmetry (class BDI)

Analog of quantum Hall transitions in monitored dynamics!

Khmel'nitskii, JETP Lett. 38, 552 (1983); Pruisken, PRL 61, 1297 (1988)

(2+1)-D class A

Monitored complex fermions in two spatial dimensions



unitary dynamics

$$\hat{U} = e^{i\theta t_{\boldsymbol{r}\boldsymbol{r}'} (\hat{c}_{\boldsymbol{r}}^{\dagger} \hat{c}_{\boldsymbol{r}'} + \hat{c}_{\boldsymbol{r}'}^{\dagger} \hat{c}_{\boldsymbol{r}})}$$

$$t_{\boldsymbol{r}+\boldsymbol{e}_x} = t, \quad t_{\boldsymbol{r}+\boldsymbol{e}_y} = t (-1)^x$$

(Harper-Hofstadter Hamiltonian) Proc. Phys. Soc. A **68**, 874 (1955)

measurements

$$\hat{K}_{d\pm} \propto e^{\pm \Gamma \, (\hat{d}^{\dagger} \hat{d} - 1/2)}, \quad \hat{K}_{f\pm} \propto e^{\pm \Gamma \, (\hat{f}^{\dagger} \hat{f} - 1/2)}$$

$$\hat{d} = (\hat{c}_{r} + \hat{c}_{r'})/\sqrt{2}, \quad \hat{f} = (\hat{c}_{r} - \hat{c}_{r'})/\sqrt{2}$$

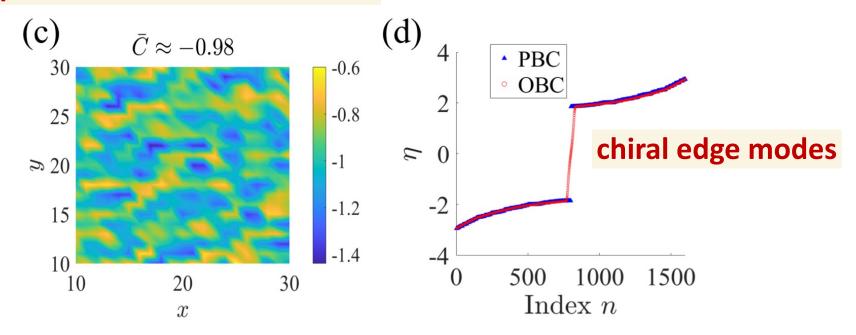
(3D winding number of L_t = 2D Chern number of H_t)

Class		d + 1 = 1	d + 1 = 2	d 1 3	d + 1 = 4	d+1=5	d + 1 = 6	d + 1 = 7	d + 1 = 8
A	\mathcal{C}_1	$\mathbb Z$	0	\mathbb{Z}	0	\mathbb{Z}	0	$\mathbb Z$	0
AIII	\mathcal{C}_0	0	\mathbb{Z}		\mathbb{Z}	0	\mathbb{Z}	0	$\mathbb Z$
AI	\mathcal{R}_1	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	$\overline{\mathbb{Z}_2}$
BDI	\mathcal{R}_2	\mathbb{Z}_2	$\mathbb Z$	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2
D	\mathcal{R}_3	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0
DIII	\mathcal{R}_4	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb Z$	0	0	0	$2\mathbb{Z}$
AII	\mathcal{R}_5	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb Z$	0	0	0
CII	\mathcal{R}_6	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb Z$	0	0
\mathbf{C}	\mathcal{R}_7	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb Z$	0
CI	\mathcal{R}_0	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}

Chiral edge modes

☆ Spacetime topology leads to chiral edge modes!

quantized local Chern marker



topologically protected slow purification

(forced measurements)

Can we analytically study universality classes of monitored dynamics?

It seems difficult in higher dimensions

- We derive the universal Fokker-Planck equations for monitored quantum dynamics in 0+1 dimension.
 - (1) Universal purification dynamics (long time)
 - (2) Universal entropy fluctuations (short time)

Xiao, Ohtsuki & **Kawabata**, PRL **134**, 140401 (2025)

Universal Stochastic Equations of Monitored Quantum Dynamics

Xiao, Ohtsuki & **Kawabata**, Phys. Rev. Lett. **134**, 140401 (2025)

Monitored quantum dynamics (1)

Purification dynamics of Gaussian mixed states of N complex fermions:

- Unitary dynamics $U_t \in \mathrm{U}\left(N\right)$
- Continuous measurement of the particle number n_i

$$M_t = \operatorname{diag}\left(e^{\epsilon_i}\right)$$

$$\epsilon_{i} = \begin{cases} (2 \langle n_{i} \rangle_{t} - 1) \gamma dt + \sqrt{\gamma} dW_{t}^{i} & \text{(Born measurement)} \\ \sqrt{\gamma} dW_{t}^{i} & \text{(forced measurement)} \end{cases}$$

measurement strength Wiener process $\langle dW_t^i \rangle = 0, \langle dW_t^i dW_t^j \rangle = \delta_{ij} dt$

cumulative Kraus operators (single-particle quantum trajectory)

$$K_{[0,t]} = (M_t U_t) \cdots (M_{\Delta t} U_{\Delta t})$$

Monitored quantum dynamics (2)

Let us prepare the initial state as the completely mixed state $ho_0 \propto 1$ and consider the decay of entropy (i.e., purification).

The time-evolved mixed state is determined by the Kraus operator:

$$\hat{\rho}_t \propto e^{2\hat{c}^{\dagger}P\hat{c}}, \quad e^{2P} := K_{[0,t]}K_{[0,t]}^{\dagger}$$

– Two-point correlation function:
$$\langle \hat{c}_i^{\dagger} \hat{c}_j \rangle_t = \frac{1}{2} \left(\tanh P^T + 1 \right)_{ij}$$

$$-\alpha \text{th R\'enyi entropy:} \qquad S_{\alpha} := \frac{1}{1-\alpha} \log \operatorname{Tr} \left(\frac{\hat{\rho}_t}{\operatorname{Tr} \hat{\rho}_t} \right)^{\alpha} = \sum_{n=1}^N f_{s\alpha} \left(z_n \right) \\ \left(f_{s\alpha} \left(z_n \right) := \frac{1}{1-\alpha} \log \left[\frac{1}{\left(1 + e^{2z} \right)^{\alpha}} + \frac{1}{\left(1 + e^{-2z} \right)^{\alpha}} \right] \right)$$

Statistical evolution of z_n (eigenvalues of P) are relevant!

Fokker-Planck equation (1)

$\not \simeq$ We derive the Fokker-Planck equations for $p\left(\{z_n\};t\right)$ (probability distribution function for z_n 's)

We perturbatively evaluate an incremental change of $\ p\left(\{z_n\};t\right)$ in the infinitesimal interval $\ [t,t+\Delta t]$ (functional renormalization group)

We model the unitary dynamics as the Haar-random unitary.

- try to capture universal chaotic features
 (to be numerically confirmed for local lattice models)
- correspond to nonlinear sigma models in 0+1 dimension
- analytical tractability (random matrix theory)

Fokker-Planck equation (2)

Fokker-Planck equation for density-matrix spectra

$$\frac{N+1}{\gamma} \frac{\partial p}{\partial t} = -\sum_{n=1}^{N} \frac{\partial \left[\left(\mu_n + \nu_n \right) p \right]}{\partial z_n} + \frac{1}{2} \sum_{m,n=1}^{N} \frac{\partial^2 \left[\left(1 + \delta_{mn} \right) p \right]}{\partial z_n \partial z_m}$$

drift term

$$\mu_n = \sum_{m \neq n} \coth(z_n - z_m)$$
 (generic for spectra of random operators)

$$\nu_n = \begin{cases} 0 & \text{(forced measurement)} \\ \sum_m (1 + \delta_{mn}) \tanh z_m & \text{(Born measurement)} \end{cases}$$

positive feedback effect of measurement

Counterpart in disordered electrons: DMPK equation

Initial condition: completely mixed state $ho_0 \propto 1$

Exact solution for forced measurements:

$$p_F(\lbrace z_n \rbrace; t) = \mathcal{N}(t) \left(\prod_{n < m} (z_n - z_m) \sinh(z_n - z_m) \right)$$

$$\times \exp\left(-\frac{N+1}{2\gamma t} \sum_{n,m} z_n \left(-\frac{1}{N+1} + \delta_{nm} \right) z_m \right)$$

Exact solution for Born measurements:

$$p_B(\lbrace z_n\rbrace;t) = e^{-N\gamma t/2} \left(\prod_n \cosh z_n\right) p_F(\lbrace z_n\rbrace;t)$$

Born's rule $\propto {
m Tr}\,\hat{
ho}_t$

Purification dynamics

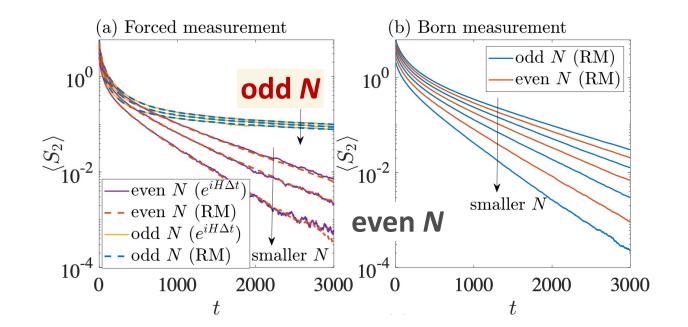
Long-time dynamics: $S_{\alpha} \sim \frac{\alpha}{\alpha - 1} \sum_{i=1}^{N} e^{-2|z_i|} \propto e^{-2\min_i |z_i|}$

Born measurement

exponential decay of entropy due to measurements

Forced measurement: exponential/algebraic purification

$$\langle z_n \rangle = \frac{2n - N - 1}{N + 1} \gamma t$$
 $\min_{n} \frac{|\langle z_n \rangle|}{t} = \begin{cases} 0 & \text{(odd } N) \\ \gamma / (N + 1) & \text{(even } N) \end{cases}$



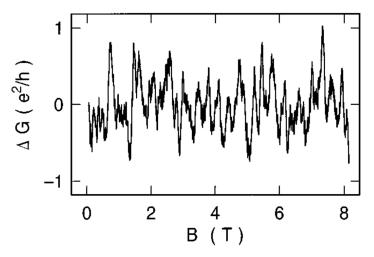
Universal conductance fluctuations

Universal conductance fluctuations in mesoscopic physics

$$\operatorname{Var}\left(\frac{G}{e^2/h}\right) = \frac{\mathcal{O}(1)\operatorname{const.}}{\beta}$$

$$\beta = 1, 2, 4$$
 (time-reversal symmetry)

Unique quantum phenomenon in the diffusive regime



Washburn & Webb, Adv. Phys. 35, 375 (1986)

Analog of UCF in monitored quantum dynamics?

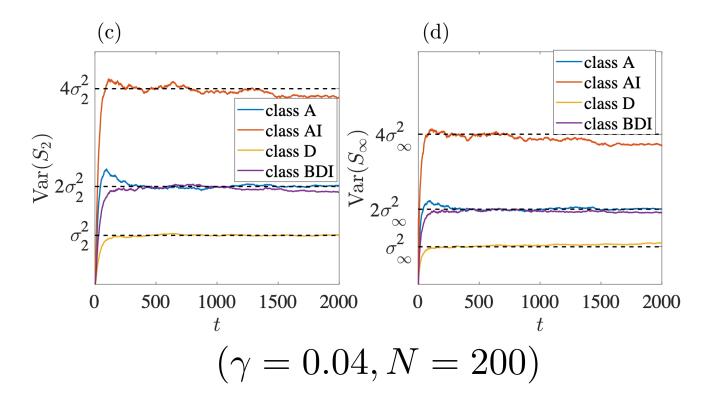
We find universal entropy fluctuations!

Universal entropy fluctuations

 $\mbox{$\stackrel{\wedge}{\sim}$}$ Universal entropy fluctuations in the large-N regime $1 \ll \gamma t \ll N$ (short-time regime)

$$Var(S_2) = 10 \log 2 - 6 \log \pi = 0.06309 \cdots$$
 (generalized to arbitrary α)

Applicable to both Born and forced measurements, even with locality



Monitored Majorana fermions

Symmetry changes the universal Fokker-Planck equations

Monitored Majorana fermions

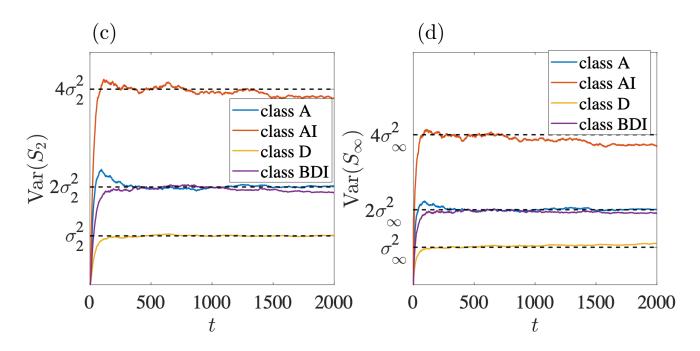
particle-hole symmetry:
$$(K_t^T)^{-1} = K_t, \quad L_t^T = -L_t$$
 (class D)

Majorana fermions
$$\begin{cases} \mu_n = \sum_{m \neq n} \left(\coth \left(z_n - z_m \right) + \coth \left(z_n + z_m \right) \right) \\ \nu_n = \tanh z_n \end{cases}$$

(class A)
$$\begin{cases} \mu_n = \sum_{m \neq n} \coth{(z_n - z_m)} \\ \nu_n = \tanh{z_n} + \sum_m \tanh{z_m} \end{cases}$$

Symmetry classification

☆ Universal entropy fluctuations provide a characteristic indicator of symmetry in the monitored dynamics!



$\overline{\mathrm{U}(1)}$	H_t	$M_{0:t}$	$L_{ m eff}$	$H_{ m dis}$	$\mathrm{Var}(S_lpha)$
	A	$\mathrm{GL}(N,\mathbb{C})/\mathrm{U}(N)$	A	AIII	$2\sigma_{lpha}^2$
\checkmark	D	$\mathrm{GL}(N,\mathbb{R})/\mathrm{O}(N)$	AI	BDI	$4\sigma_{lpha}^2$
×	D	$\mathrm{SO}(2N,\mathbb{C})/\mathrm{O}(2N)$	D	DIII	σ_{lpha}^2
×	$\mathrm{D}{\oplus}\mathrm{D}$	$O(N, N)/O(N) \times O(N)$	BDI	D	$2\sigma_{lpha}^2$

Summary

PRL 134, 140401 & 2412.06133

- We develop the tenfold classification of symmetry and topology for monitored free fermions and establish the bulk-boundary correspondence.
- We derive universal stochastic equations of monitored free fermions and find universal purification dynamics and entropy fluctuations.

Class		d + 1 = 1	d + 1 = 2	d + 1 = 3	d + 1 = 4	d + 1 = 5	d + 1 = 6	d + 1 = 7	d + 1 = 8
A	\mathcal{C}_1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
AIII	\mathcal{C}_0	0	$\mathbb Z$	0	\mathbb{Z}	0	${\mathbb Z}$	0	$\mathbb Z$
ΑI	\mathcal{R}_1	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2
BDI	\mathcal{R}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2
D	\mathcal{R}_3	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0
DIII	\mathcal{R}_4	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb Z$	0	0	0	$2\mathbb{Z}$
AII	\mathcal{R}_5	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb Z$	0	0	0
$_{ m CII}$	\mathcal{R}_6	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb Z$	0	0
$^{\mathrm{C}}$	\mathcal{R}_7	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0
$_{ m CI}$	\mathcal{R}_0	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb Z$

