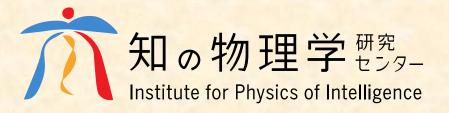
大自由度力オス系の 有効自由度を決める。

- Lyapunovベクトルによるアプローチ -

竹内一将

東京大学 大学院理学系研究科 物理学専攻



謝辞

創発的研究支援事業 Fusion Oriented REsearch for disruptive Science and Technology

Active Matter c2c

Takeuchi Lab

研究室の目標:ソフトマター・生物系を駆使して 新しい非平衡統計力学を実験的に探求・理解していこう!

「実験統計力学研究室」

液晶がつむぐ非平衡法則: ミクロとマクロ

液晶トポロジカル欠陥の3次元ダイナミクス観察

液晶のトポロジカル欠陥 を共焦点顕微鏡で観察し、 欠陥の3次元非平衡ダイナミ クスを捉えることに成功し ました。

液晶で見るIsing動的スケーリング則

Ising強磁性などの秩序化 験で検証することに成功し ました。(近日公開予定)

微生物集団の非平衡実験

バクテリア

バクテリア集団の長時間計測に向けた 微小流体デバイス開発:広域マイクロ灌流系

バクテリア集団を一様な 環境下で長時間安定して銀 察できる実験系を開発し、 バクテリア集団の挙動の理 解を深めています。

細胞サイズゆらぎのスケール不変性

広域マイクロ灌流系を用 いた実験で、細胞のサイズ 分布に普遍的なスケーリン グ則を見出しました。

アクティブマターの物理学 アクティブマタ

L流界面成長に見るKPZ普遍法則

ゆらざながら成長し続け る界面には、様々な物理や 数学と繋がる非平衡普遍法 則が隠れていました。

位相欠陥乱流における普遍的な臨界現象の発見

一度入ったら戻れない。 そのような系で予言されて いた directed percolation 普遍クラスが実験で初めて 見つかりました。

パクテリア懸濁液の route to turbulence

バクテリア懸濁液のモデ ル方程式を任意境界で解く 数値計算コードを開発し、 パクテリア既濁濁の乱流化 過程を明らかにしました。 (近日公開予定)

バクテリア集団のガラス転移

バクテリア集団が、増殖 により、アクティブ流体相 からアクティブガラス相に 転移することを発見しまし た。 (近日公開予定)

マクロなソフトマター系での非平衡現象

液晶

スポンジ状粉体の風変わりなレオロジー

大変形可能な粒子からな る粉体が示す、特徴的な流 動転移を発見しました。こ の転移は、粒子の力学特性 に基づいて理解できます。

非平衡 相転移

バクテリアコロニーの成長とトポロジカル欠陥

増殖するバクテリアコロ ニーにおいて、トポロジカ ル欠陥が三次元的成長を駆 動することを明らかにしま

バクテリア集団運動における秩序

高密度のバクテリア集団 は乱流のように乱雑な集団 運動を示します。そこに秩 か? その一般論を実験に 基づき構築しました。

大自由度力オスの集団的性質

時系列解析による大自由度力学系の不安定性計測

対称性の高い大自由度力 学系を対象に、実験に適用 可能な不安定性の計測手法 を開発しています。

大自由度力オスの不安定性解析の新展開

近年計算可能になった Lyapunovベクトルを用 い、集団挙動の不安定性や 有効自由度を調べることに 成功しました。

自己駆動コロイド粒子の集団運動

電場をエネルギー源とし て動きまわるコロイド粒子 を用いて、自己駆動粒子系 の非平衡法則を探究してい

https://lab.kaztake.org |

カオス ~ バタフライ効果

気象学者 Edward N. Lorenz (1972)

"Does the flap of a butterfly's wings in Brazil

set off a tornado in Texas?"

「ブラジルの蝶の羽ばたきがテキサスで嵐を起こすか?」

v(t): (ある地点での)風速

v(0) に摂動を与える:

$$v(0) \mapsto v(0) + \delta v(0)$$

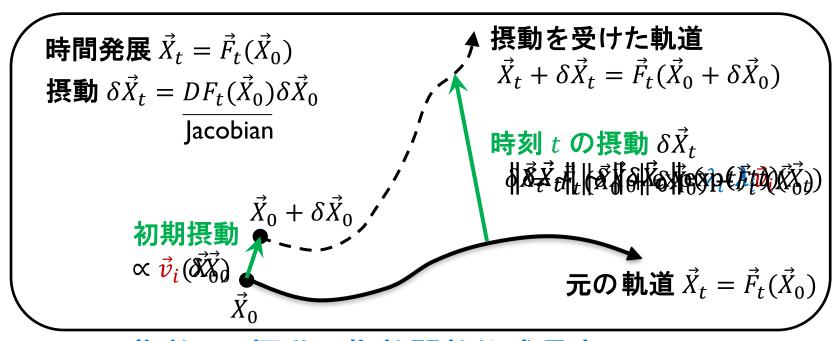
$$v(t) \mapsto v(t) + \delta v(t)$$

カオスなら $|\delta v(t)| \sim e^{\lambda t}$

指数的增大!

λ: Lyapunov指数

より正確に...



Lyapunov指数 λ_i : 摂動の指数関数的成長率 $(\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_N)$

Lyapunovベクトル $\vec{v}_i(\vec{X})$: 指数 λ_i で成長する固有の摂動方向

一般の摂動
$$\delta \vec{X}_0 = \sum_i C_i \vec{v}_i(\vec{X}_0),$$

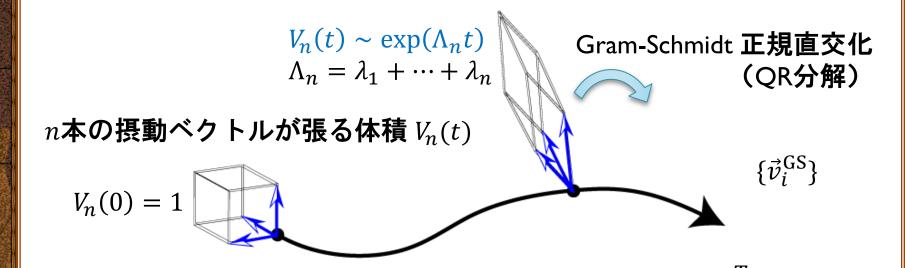
$$\delta \vec{X}_t \sim \sum_i C_i e^{\lambda_i t} \vec{v}_i(\vec{X}_t) \sim C_1 e^{\lambda_1 t} \vec{v}_1 \quad (C_1 \neq 0$$
 の場合)

Lyapunov指数の計算手法

[Shimada & Nagashima, PTP <u>61</u>, 1605 (1979); Benettin *et al.* (1980)]

※時間発展方程式 $\delta \vec{X}_t = DF_t(\vec{X}_0)\delta \vec{X}_0$ は既知とする

考え方:「摂動ベクトルが張る体積を測る」

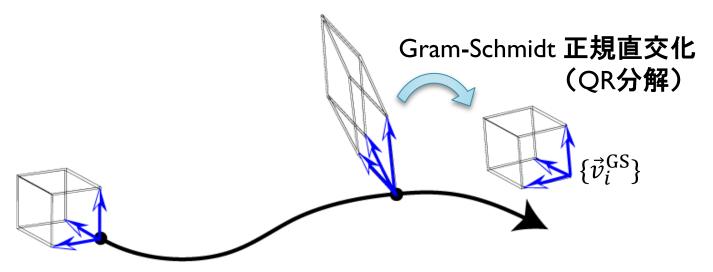


注I: QR分解の対角成分から直接評価可能 $\lambda_i = \frac{1}{T} \sum_{t=1}^{\hat{r}} \log R_{ii}(t)$

注2: Gram-Schmidt ベクトル $\vec{v}_i^{GS} \neq \text{Lyapunov}$ ベクトル \vec{v}_i

Lyapunovベクトルの計算手法 [Ginelli et al., PRL <u>99</u>, 130601 (2007); J Phys A 2013 (review)]

※時間発展方程式 $\delta \vec{X}_t = DF_t(\vec{X}_0)\delta \vec{X}_0$ は既知とする



- span $\left[\vec{v}_1^{\text{GS}}, \cdots, \vec{v}_n^{\text{GS}}\right] \simeq \text{span}\left[\vec{v}_1, \cdots, \vec{v}_n\right]$
 - $\rightarrow \vec{v}_n$ は span $[\vec{v}_1^{GS}, \cdots, \vec{v}_n^{GS}]$ 中で成長率最小の方向
 - $\rightarrow \vec{v}_n$ は span $[\vec{v}_1^{GS}, \dots, \vec{v}_n^{GS}]$ 中で

時間逆向きに最も速く成長する方向

注:QR分解の Q, R 行列を使って効率的に計算可能

• Lyapunovベクトルは最近 計算可能に → 発展の余地大

量子系との関係?

Out-of-time-order correlator (OTOC) [García-Mata et al., Scholarpedia 2023]

$$C_{\widehat{V}\widehat{W}}(t) = \left\langle \left[\widehat{W}_t, \widehat{V}\right]^{\dagger} \left[\widehat{W}_t, \widehat{V}\right] \right\rangle \quad \widehat{O}_t = e^{\frac{i\widehat{H}t}{\hbar}} \widehat{O} e^{-\frac{i\widehat{H}t}{\hbar}}$$

古典極限 ħ → 0

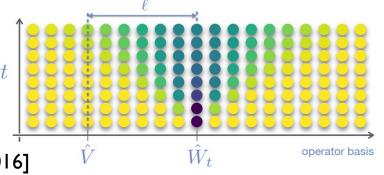
$$\Rightarrow \frac{1}{i\hbar} [\widehat{W}_t, \widehat{V}] \rightarrow \{W(t), V(0)\}$$

$$\widehat{W} = \widehat{X}, \widehat{V} = \widehat{P}_X$$
 とすると、 $\{X(t), P_X(0)\} = \frac{\partial X(t)}{\partial X(0)} \sim e^{\lambda t}$

$$\succ C_{\hat{P}_X\hat{X}}(t) \rightarrow \hbar^2 \left| \frac{\partial X(t)}{\partial X(0)} \right|^2 \sim \hbar^2 e^{2\lambda t}$$

• 量子系の特徴量として

- > 量子カオス,"量子Lyapunov指数"
- > 量子情報, scrambling
- > 成長率の上限 [Maldacena et al. JHEP 2016]



独り言:量子Lyapunovスペクトル、Lyapunovベクトルは定義可能?

空間に広がったカオス現象:時空カオス

燃焼フロント

[Martinez-Ruiz et al., APS Gallery of fluid motion 2018]

液晶乱流

時空カオス解の 有効自由度は? (記述にはいくつ 変数が必要か?)

※KPZクラス (熱場2017 講演)

バクテリア集団運動

Toner-Tu-Swift-Hohenberg**方程式**

$$\begin{aligned} \partial_t \vec{v} + \lambda (\vec{v} \cdot \vec{\nabla}) \vec{v} \\ &= a\vec{v} - b|\vec{v}|^2 \vec{v} \\ &- (1 + \nabla^2)^2 \vec{v} - \vec{\nabla} p \end{aligned}$$

[Nishiguchi et al., PNAS 2025]

励起子ポラリトン凝縮体

散逸Gross-Pitaevskii方程式

$$\begin{split} &i\partial_t \psi \\ &= \left[-\nabla^2 + g_c |\psi|^2 + \frac{g_R P}{\gamma_R + R|\psi|^2} \right. \\ &\left. + \frac{i}{2} \left(\frac{RP}{\gamma_P + R|\psi|^2} - \gamma_C \right) \right] \psi \end{split}$$

偏微分方程式の時空カオス解の有効自由度

偏微分方程式の解は何変数で記述できるか?

(例:KS方程式 $\partial_t u = -\partial_x^2 u - \partial_x^4 u - u \partial_x u$ の解 $u(x,t), x \in [0,L]$)

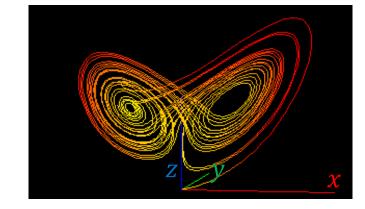
- •無限? (: Fourier級数 $u(x,t) = \sum_{n=0}^{\infty} [A_n \cos(k_n x) + B_n \sin(k_n x)]$)
- ・物理的にはカットオフ波数を期待 → 有限自由度?
- •参考:散逸系力オスの strange attractor

例: Lorenz 1963 モデル

$$\begin{cases} \dot{x} = \sigma(-x + y) \\ \dot{y} = -xz + rx - y \\ \dot{z} = xy - bz \end{cases}$$

相空間:3次元

アトラクター:約2.06次元



Wiswanath Physica D 20041

散逸のあるカオス系は、 見かけより少数の自由度しか持たない。

数学的知見(散逸つき偏微分方程式のカオス)

Constantin et al., Springer (1989)

軌道は一般に

- (I) 有限整数次元の「慣性多様体」に吸い込まれ、
- (2) 最終的に有限フラクタル次元のアトラクターに収まる

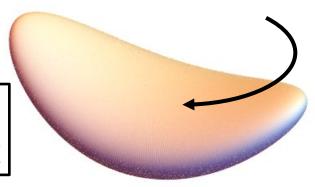
と信じられている。

本当なら...

- 過渡後の解はたかだか有限次元
- 有限個の変数の常微分方程式でOK!

しかし

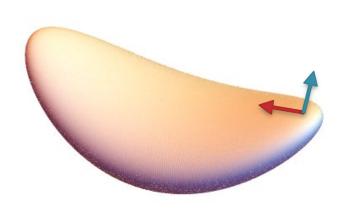
- 実際に何次元かは不明(数学が与えたのは上限だけ)
- どのような変数を選べば良いかも不明



慣性多様体を数値的に捉える!

Takeuchi, Chaté, Ginelli, Yang, Radons, Cvitanović, ...
PRL 102, 074102 (2009); PRE 84, 046214 (2011); PRL 117, 024101 (2016)

アイディア: 摂動に対する応答を活用しよう!



主な共同研究者

H. Chaté

F. Ginelli

H.-I. Yang G. Radons

P. Cvitanović

- 慣性多様体内部の摂動 → バタフライ効果 (様々な摂動モードを励起し指数関数的成長)
- 慣性多様体外の摂動 → 軌道に影響与えず指数関数的減衰

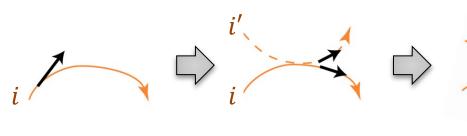
摂動の成長/減衰・他モードへの影響を調べてみよう

慣性多様体を数値的に捉える!

- 慣性多様体内部の摂動 → バタフライ効果 (様々な摂動モードを励起し指数関数的成長)
- 慣性多様体外の摂動 → 軌道に影響与えず指数関数的減衰

Lyapunovベクトル(固有の摂動方向)が使えるはず!

• $\{\vec{v}_i(\vec{X})\}$ は直交基底ではない。接することもできる。接したら、摂動は他モードに伝搬するはず。



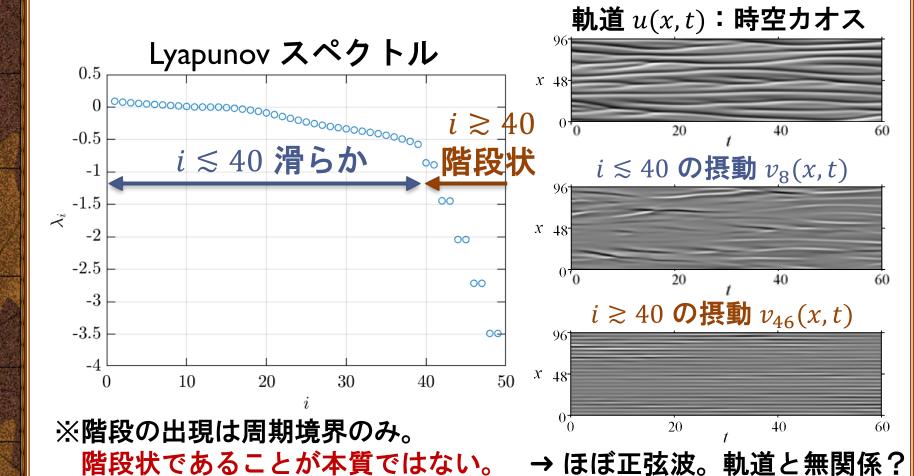
• 他と接しない摂動は、 $e^{\lambda_i t}$ で単独で成長/減衰するだけ。

慣性多様体外の摂動 \rightarrow 接点なし、 $\lambda_i < 0$ ではないか?

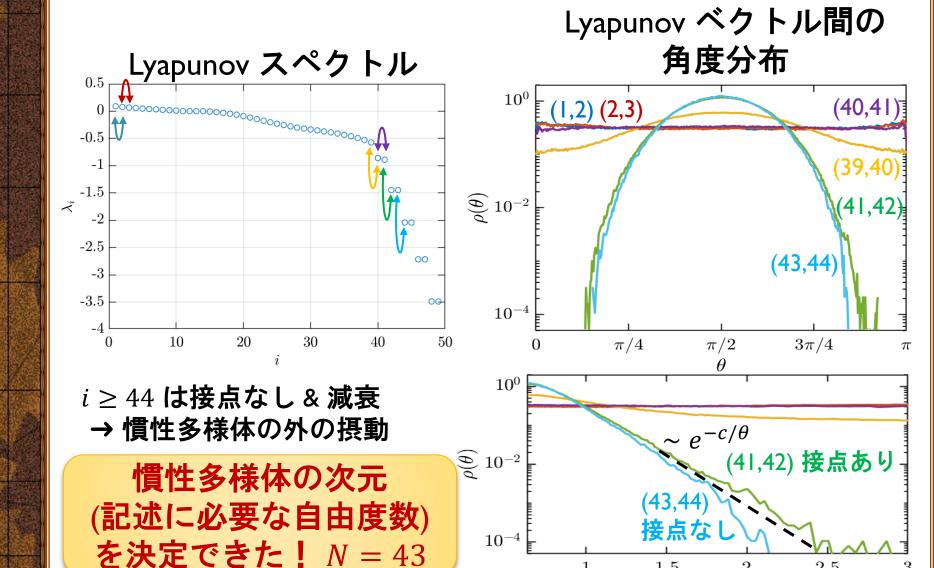
蔵本-Sivashinsky (KS) 方程式の解析 PRL 102,074102 (2009) PRE 84,046214 (2011)

 $\partial_t u = -\partial_x^2 u - \partial_x^4 u - u \partial_x u, \qquad x \in [0, L]$ L = 96 **周期境界**

負の拡散 → 不安定性



KS方程式:慣性多様体次元の決定 PRL 102,074102 (2009) PRE 84,046214 (2011)



 $1/\theta$

わかったこと

Yang, Takeuchi, ..., PRL 102, 074102 (2009); PRE 84, 046214 (2011)

慣性多様体

次元 N

• 慣性多様体次元(必要な自由度数) N を exact に決められるようになった!

▶ 数学的には上限しか与えられていなかった。

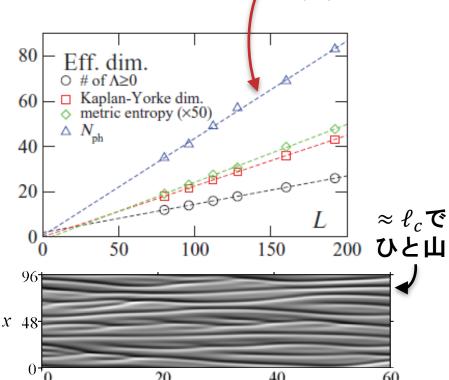
• N は示量的 (N ~ L)

> 数学で得られる上限は 示量的でなかった。 $N < \text{const} \times L^{2.46}$ [Robinson 1994, Jolly et al. 2000]

• KS方程式の場合

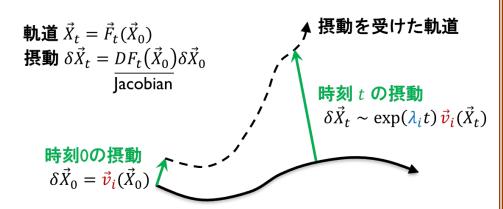
- ho 特徴的長さ $\ell_c \equiv 2\pi\sqrt{2}$
- ightarrow 我々の結果 $N \approx 3.8 imes \frac{L}{\ell_a}$

> KS特有の物理からの期待 $N \approx 4 \times \frac{L}{\rho}$ [佐々,未発表] \rightarrow 我々の結果は物理的にも真っ当だった。



できていなかったこと

- 時間発展方程式を知らないと何もできない!
 - → 実験には使えない!

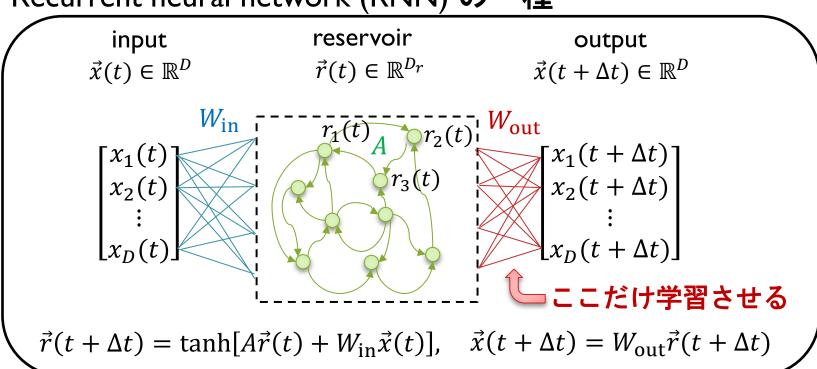


- •実験(時系列解析)で Lyapunov 指数が測れるのは 少数自由度の系に限られていた。 (::バタフライ効果を実測するのは不可能だった!)
- Edward Ott グループ (2017) [Pathak et al. Chaos 27, 121102 (2017); PRL 2018]
 機械学習 (リザバー計算) +時系列データで
 Lyapunovスペクトルを測る方法が提案された。
 (KS方程式で概念実証されたが実験はない)

リザバー計算

[Maass et al. Neural Comput. 2002; Jaeger & Haas, Science 2004]

Recurrent neural network (RNN) の一種



- 学習させるのは $W_{
 m out}$ だけ (計算コスト、メモリ、収束性向上)
- 予測フェーズ:これ自体が自律した力学系
 - → Lyapunov指数・ベクトルの数値計算手法を使える。

まとめ (Review part)

参考: Pikovsky & Politi,

"Lyapunov Exponents:

A Tool to Explore Complex Dynamics" (Cambridge University Press, 2016)

- 古典カオス系のLyapunov指数・Lyapunovベクトル
 - N自由度のカオス系には、
 Lyapunov指数・Lyapunovベクトルの組(λ_i, v̄_i)がN個。
 固有値・固有ベクトルと似た関係。
 - › Lyapunovベクトルの計算手法は比較的最近できた。 発展の余地大。
 - > 量子系の対応物? OTOCの拡張・固有値問題化?
- 時空カオス系の有効自由度 [Yang, Takeuchi, ..., PRL 102, 074102 (2009); PRE 84, 046214 (2011)]
 - ▶ 散逸つき時空カオスの解は有限の自由度で記述可能
 - ▷必要な自由度数(慣性多様体次元)は Lyapunovベクトル間の接点の有無から決定可能
 - > 蔵本-Sivashinsky 方程式などで数値的に実証