揺らぐ流体力学・QCD臨界点の理論研究

赤松 幸尚 (大阪大学)

「熱場の量子論とその応用」 京都大学基礎物理学研究所 2024年9月9日-11日

Last month, two giants, T.D.Lee and J.Bjorken, passed away

The goal of heavy-ion collisions should be remembered

- Little Bang on the Earth to simulate Big Bang of the Universe
- I initiated my research to understand the hierarchy of matter
- Now I have more detailed questions, of course

Last month, two giants, T.D.Lee and J.Bjorken, passed away

The goal of heavy-ion collisions should be remembered

- Little Bang on the Earth to simulate Big Bang of the Universe
- I initiated my research to understand the hierarchy of matter
- Now I have more detailed questions, of course Quarkonium: can we witness color fields in the QGP?

Last month, two giants, T.D.Lee and J.Bjorken, passed away

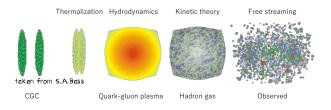
The goal of heavy-ion collisions should be remembered

- Little Bang on the Earth to simulate Big Bang of the Universe
- I initiated my research to understand the hierarchy of matter
- Now I have more detailed questions, of course

Critical point: what signals can we expect?

Last month, two giants, T.D.Lee and J.Bjorken, passed away

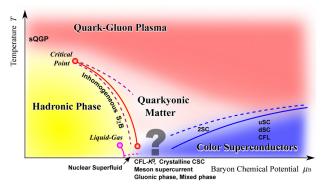
The goal of heavy-ion collisions should be remembered


- Little Bang on the Earth to simulate Big Bang of the Universe
- I initiated my research to understand the hierarchy of matter
- Now I have more detailed questions, of course

Ask a big question, and try to answer smaller questions 眼高手低(益川語録) never 眼低手低

Heavy-ions

Key achievements


- Formation of Quark-Gluon Plasma (QGP)
- ▶ Strongly coupled nature of QGP ← Nearly perfect fluid $\eta/s \sim 1/4\pi$

Challenges

- Hydrodynamization in a rapid expansion
- Hydrodynamic collectivity for small systems
- ▶ Dynamical properties of strongly coupled QGP η, ζ, D, \cdots
- How to study critical point and dense matter at lower energies?
- How to deal with abundant charms in higher energies?

A speculated QCD phase diagram

[Fukushima-Hatsuda (11)]

Can we discover the critical point or 1st order transition in heavy-ion collisions or by lattice simulations? Critical point search on the lattice and in the heavy-ions

- 1. QCD critical point in the phase diagram
 - Lattice + Pade + LYZ
- 2. Critical point search in heavy-ions: static properties
 - Ising universality class
 - Higher cumulants
 - Experimental data
- 3. Critical point search in heavy-ions: dynamic properties
 - Model H
 - Kibble-Zurek scaling

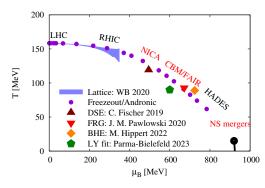
Contents

1. QCD critical point in the phase diagram

- 2. Critical point search in heavy-ions: static properties
- 3. Critical point search in heavy-ions: dynamical properties
- 4. Summary

Lattice QCD has the sign problem at finite μ

Path integral for QCD partition function


$$\begin{split} Z(\beta,\mu) &= e^{P(T,\mu)V/T} = \mathrm{Tr} e^{-\beta(H-\mu N)} \\ &= \int \mathcal{D}U \underbrace{\det[\not\!\!D(U) + m_q - \mu \gamma_4]}_{\text{complex "probability" at } \mu \neq 0} e^{S_E[U]} \end{split}$$

Monte Carlo method fails \rightarrow several attempts

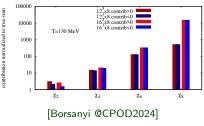
- Taylor expansion
- Canonical approach
- Reweighting method
- Imaginary chemical potential
- Lefschetz thimble
- Path optimization
- Complex Langevin method

Several approaches presented at CPOD2024

- Lattice QCD with Taylor expansions
- Lee-Yang edge singularities
- Dyson-Schwinger equations
- Functional renormalization group
- Black hole engineering

[Borsanyi @CPOD2024]

Lattice QCD with Taylor expansions

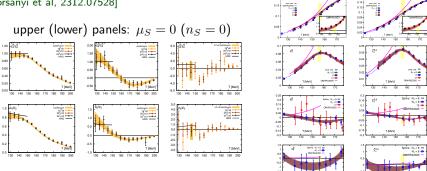

Basic idea: Expand $P(T, \mu)$ in terms of μ

$$\frac{P(T,\mu)}{T^4} = \frac{P(T,0)}{T^4} + \frac{1}{2!} \frac{\mu^2}{T^2} \chi_2(T) + \frac{1}{4!} \frac{\mu^4}{T^4} \chi_4(T) + \cdots$$
$$e^{P(T,\mu)V/T} = \int \mathcal{D}U \det[\mathcal{D}(U) + m_q - \mu\gamma_4] e^{S_E[U]}$$

Lattice calculation of χ_{2n} involves expansion of det (\cdots)

$\chi_{200}^{uds} = +\langle B_u \rangle + \langle A_u^2 \rangle - \langle A_u \rangle^2$	(B.5)
$\chi_{110}^{uds} = \pm (A_{\mu}^2) - (A_{\mu})^2$	(B.6)
$\chi_{101}^{uds} = \pm \langle A_u A_s \rangle - \langle A_s \rangle \langle A_u \rangle$	(B.7)
$\chi_{101}^{uds} = + \langle C_u \rangle + 3 \langle A_u B_u \rangle + \langle A_u^3 \rangle - 3 \langle B_u \rangle \langle A_u \rangle - 3 \langle A_u \rangle \langle A_u^2 \rangle + 2 \langle A_u \rangle^3$	(B.8)
$\chi_{300}^{ab} = + \langle A_u B_u \rangle + \langle A_u^2 \rangle - \langle B_u \rangle \langle A_u \rangle - 3 \langle A_u \rangle \langle A_u^3 \rangle + 2 \langle A_u \rangle^3$	(B.9)
	(.)
$\chi_{120}^{uds} = +\langle A_u B_u \rangle + \langle A_u^3 \rangle - \langle B_u \rangle \langle A_u \rangle - 3\langle A_u \rangle \langle A_u^2 \rangle + 2\langle A_u \rangle^3$	(B.10)
$\chi^{uds}_{111} = + \langle A_u A_u A_s \rangle - \langle A_s \rangle \langle A_u^2 \rangle - 2 \langle A_u \rangle \langle A_u A_s \rangle + 2 \langle A_s \rangle \langle A_u \rangle^2$	(B.11)
$\chi_{400}^{uds} = +\langle D_u \rangle + 3\langle B_u B_u \rangle + 4\langle A_u C_u \rangle + 6\langle A_u^2 B_u \rangle + \langle A_u^4 \rangle$	
$-4\langle C_u \rangle \langle A_u \rangle - 3\langle B_u \rangle^2 - 6\langle B_u \rangle \langle A_u^2 \rangle - 12\langle A_u \rangle \langle A_u B_u \rangle$	
$-4\langle A_u \rangle \langle A_u^3 \rangle - 3\langle A_u A_u \rangle \langle A_u^2 \rangle + 12\langle B_u \rangle \langle A_u \rangle^2$	
$+ 12\langle A_u \rangle^2 \rangle \langle A_u^2 \rangle - 6\langle A_u \rangle^4$	(B.12)
$\chi^{uds}_{310} = + \langle A_u C_u \rangle + 3 \langle A^2_u B_u \rangle + \langle A^4_u \rangle - \langle C_u \rangle \langle A_u \rangle - 3 \langle B_u \rangle \langle A^2_u \rangle$	
$- 6\langle A_u \rangle \langle A_u B_u \rangle - 4\langle A_u \rangle \langle A_u^3 \rangle - 3\langle A_u^2 \rangle \langle A_u^2 \rangle$	
+ $6\langle B_u \rangle \langle A_u \rangle^2$ + $12\langle A_u \rangle \langle A_u \rangle \langle A_u^2 \rangle - 6\langle A_u \rangle^4$	(B.13)
$\chi_{220}^{uds} = +\langle B_u^2 \rangle + 2\langle A_u^2 B_u \rangle + \langle A_u^4 \rangle - \langle B_u \rangle^2 - 2\langle B_u \rangle \langle A_u^2 \rangle$	
$-4\langle A_u \rangle \langle A_u B_u \rangle - 4\langle A_u \rangle \langle A_u^3 \rangle - 3\langle A_u^2 \rangle \langle A_u^2 \rangle$	
+ $4\langle B_u \rangle \langle A_u \rangle \langle A_u \rangle$ + $12\langle A_u \rangle \langle A_u \rangle \langle A_u^2 \rangle - 6\langle A_u \rangle^4$	(B.14)
$\chi^{uds}_{211} = + \langle A_u B_u A_s \rangle + \langle A^3_u A_s \rangle - \langle A_s \rangle \langle A_u B_u \rangle - \langle A_s \rangle \langle A^3_u \rangle - \langle B_u \rangle \langle A_u A_s \rangle - \langle B_u \rangle \langle A_u A_s \rangle - \langle B_u \rangle \langle A_u A_s \rangle - \langle A_u A_$	$A_s \rangle \langle A_u \rangle$
$- 3\langle A_u \rangle \langle A_u^2 A_s \rangle - 3\langle A_u A_s \rangle \langle A_u^2 \rangle + 2\langle A_s \rangle \langle B_u \rangle \langle A_u \rangle + 6\langle A_s \rangle \langle A_u \rangle \langle A_u^2 \rangle$	
$+ 6 \langle A_u \rangle^2 \langle A_u A_s \rangle - 6 \langle A_s \rangle \langle A_u \rangle^3$	(B.15)

Large cancellation in χ_{2n}

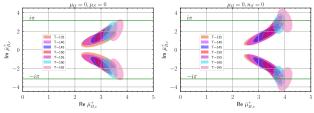

[Borsanyi et al, JHEP10(2018)205]

Taylor expansion up to μ^8

Budapest-Wuppertal

[Borsanyi et al, 2312.07528]

Hot QCD [Bollweg et al, PRD105(2022)074511]


$$\frac{P(\mu) - P(0)}{T^4} = P_2 \hat{\mu}^2 + P_4 \hat{\mu}^4 + P_6 \hat{\mu}^6 + P_8 \hat{\mu}^8, \quad \hat{\mu} = \frac{\mu}{T}$$
$$\frac{P_4 \Delta P(\mu)}{P_2^2 T^4} = \bar{x}^2 + \bar{x}^4 + c_6 \bar{x}^6 + c_8 \bar{x}^8, \quad \bar{x} = \sqrt{\frac{P_4}{P_2}} \hat{\mu}$$

What can we learn from χ_{2-8} ? – Padé approximation

1. Taylor series up to μ^8 + [4,4] Padé approximation

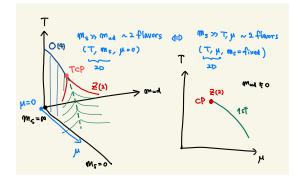
$$\frac{P_4 \Delta P(\mu)}{P_2^2 T^4} \simeq \underbrace{\frac{(1-c_6)\bar{x}^2 + (1-2c_6+c_8)\bar{x}^4}{(1-c_6) + (c_8-c_6)\bar{x}^2 + (c_6^2-c_8)\bar{x}^4}}_{\text{4 poles in complex }\bar{x} \text{ plane}} = P[4,4]$$

2. Poles in complex $\hat{\mu}$ plane (nearest to the origin)

[Bollweg et al, PRD105(2022)074511]

- 3. Critical point is unlikely to exist in $135 \le T \le 165$ MeV
 - lacksim Because poles are away from real $\hat{\mu}$
 - It may exist below T = 135 MeV

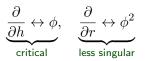
Contents


- 1. QCD critical point in the phase diagram
- 2. Critical point search in heavy-ions: static properties
- 3. Critical point search in heavy-ions: dynamical properties
- 4. Summary

Ising model \sim QCD critical point

1. Massless 2-flavor QCD has $SU(2)_L \otimes SU(2)_R \simeq O(4)$ symmetry

$$\mathcal{L}|_{\mathsf{near CP}} \simeq \frac{1}{2} (\boldsymbol{\nabla} \vec{\psi})^2 + \frac{a}{2} \vec{\psi}^2 + \frac{b}{4} (\vec{\psi}^2)^2 + \frac{c}{6} (\vec{\psi}^2)^3 - h \psi_0$$


2. Speculated mapping from (a,b,h) to $(T,\mu(m_s),m_{ud})$ of QCD

We can use the critical exponents of Ising model for static observables

Critical fluctuations of QCD critical point

1. Ising model in (r, h) phase diagram

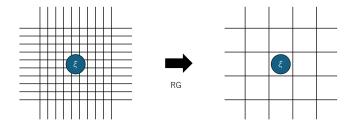
2. Chiral condensate fluctuation at QCD critical point $\varphi \equiv \langle \bar{q}q \rangle - \langle \bar{q}q \rangle_c$

$$rac{\partial}{\partial \hat{h}} \leftrightarrow \varphi, \quad rac{\partial}{\partial \hat{r}} \leftrightarrow \varphi^2$$

3. Baryon and energy densities mix with φ

$$\begin{split} \frac{\partial}{\partial \hat{h}} &= c_1 \frac{\partial}{\partial \beta} + c_2 \frac{\partial}{\partial (\beta \mu)} \leftrightarrow c_1 \underbrace{(e - e_c)}_{\Delta e} + c_2 \underbrace{(n - n_c)}_{\Delta n} \leftrightarrow \varphi, \\ \frac{\partial}{\partial \hat{r}} &= c_3 \frac{\partial}{\partial \beta} + c_4 \frac{\partial}{\partial (\beta \mu)} \leftrightarrow c_3 (e - e_c) + c_4 (n - n_c) \leftrightarrow \varphi^2 \end{split}$$

Almost any linear combinations of Δe and Δn are critical


Scaling with correlation length

1. Mean field approximation around ground state $\phi - \langle \phi \rangle = \delta \phi \rightarrow \phi$

$$f(\phi) = \frac{1}{2}m^2\phi^2 + \frac{1}{3}b_3\phi^3 + \frac{1}{4}b_4\phi^4$$

2. Roughly, kinetic term drops at $\Delta x \sim \xi$

$$F[\phi] \simeq \xi^3 \sum_i \left[\frac{1}{2} m^2 \phi_i^2 + \frac{1}{3} b_3 \phi_i^3 + \frac{1}{4} b_4 \phi_i^4 \right] \sim T,$$

$$\phi_i \sim \sqrt{T/\xi}, \quad b_3 \sim \bar{b}_3 / T^{1/2} \xi^{3/2}, \quad b_4 \sim \bar{b}_4 / T \xi$$

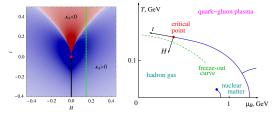
Non-Gaussian fluctuations

1. Cumulants near the critical point

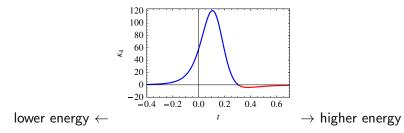
$$V\kappa_2 = \frac{1}{V} \int_{x,y} \langle \phi(x)\phi(y) \rangle_c \sim \frac{\xi^6}{V} \sum_i \langle \phi_i^2 \rangle_c \sim \frac{\xi^6}{V} \frac{V}{\xi^3} \frac{T}{\xi} \sim T\xi^2,$$

$$V^{n-1}\kappa_n = \frac{1}{V} \int_{x_1,\cdots,x_n} \langle \phi(x_1)\cdots\phi(x_n) \rangle_c \sim \frac{\xi^{3n}}{V} \sum_i \langle \phi_i^n \rangle_c$$

$$\sim \frac{\xi^{3n}}{V} \frac{V}{\xi^3} \left(\frac{T}{\xi}\right)^{n/2} \sim T^{n/2} \xi^{5n/2-3}$$

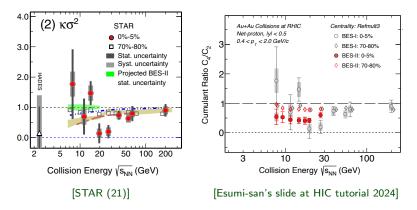

2. Formula [Stephanov (09)]

$$\therefore \kappa_n \sim \frac{T^{n/2} \xi^{n(5-\eta)/2-3}}{V^{n-1}}, \quad \eta \approx 0.04$$


Higher-order cumulants are sensitive to ξ but suppressed by 1/V ϕ = almost any linear combination of Δn and Δe

Theoretical expectation of kurtosis [Stephanov (11)]

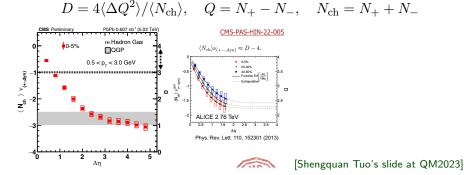
1. Signs of kurtosis κ_4 in Ising model and freezeout surface



2. Sign change expected in Beam Energy Scan experiment

Experimental data of kurtosis

STAR data updated


Peak gone ..., but dip still there ? (I cannot see) Deviation from normal phase base line should be discussed?

Some thoughts about rapidity window dependence?

Diffusion of conserved densities in expanding system

$$\kappa \frac{\partial^2}{\partial z^2} = \frac{\kappa}{\tau^2} \frac{\partial^2}{\partial \eta^2} = \frac{1}{\tau} \quad \rightarrow \quad \text{diffusion frozen at } \tau_D \sim \kappa / (\Delta \eta)^2$$

CMS data of D measure ($\simeq 3$ for hadron gas / $\simeq 1$ for QGP)

Can we make a 2D scan at low baryon density regions? [Sakaida-Asakawa-Kitazawa (14), Sakaida-Asakawa-Fujii-Kitazawa (17)]

Contents

- 1. QCD critical point in the phase diagram
- 2. Critical point search in heavy-ions: static properties
- 3. Critical point search in heavy-ions: dynamical properties
- 4. Summary

Hydrodynamic description

Long-time and long wavelength phenomena

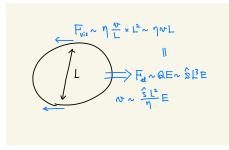
- ► Conserved densities → change only through surface
- ► Nambu-Goldstone modes → massless boson
- \blacktriangleright Critical amplitudes near the critical point \rightarrow large correlation length
- ► Gauge fields → unscreened magnetic field

Modes with $\lim_{k\to 0} \omega(\mathbf{k}) = 0$ are relevant

Soft modes near the QCD critical point

1. Recall that almost any linear combinations of Δe and Δn are critical

$$\frac{\partial}{\partial \hat{h}} = c_1 \frac{\partial}{\partial \beta} + c_2 \frac{\partial}{\partial (\beta \mu)} \leftrightarrow c_1 \underbrace{(e - e_c)}_{\Delta e} + c_2 \underbrace{(n - n_c)}_{\Delta n} \leftrightarrow \varphi$$


- 2. QCD critical point is Z(2) symmetry breaking \rightarrow no NG modes
- 3. Color magnetic screening at long distance
- 4. Mixed with momentum density $oldsymbol{g}
 ightarrow$ Hydrodynamics ightarrow Model H

Candidate: Hydrodynamics with $\Delta e, \Delta n, g$

Keep relevant modes: Model H with $\hat{s} = \Delta(s/n), \boldsymbol{g}_T$

Conductivity $\sigma \propto \xi$ in Model H, intuitively [Hohenberg-Halperin (77)]

1. A lump of \hat{s} with linear dimension L in an electric field E

2. Electric current $j \sim \hat{s}v$ in the equilibrium

$$j \sim \hat{s}v = \underbrace{\frac{\hat{s}^2}{\eta}L^2}_{\sim \sigma}E, \quad \hat{s}^2 \sim \underbrace{L^{-3}\frac{1}{L^{-2} + \xi^{-2}}}_{d^3k/(k^2 + \xi^{-2})}, \quad \sigma \sim \frac{1}{\eta L}\frac{1}{L^{-2} + \xi^{-2}} \lesssim \frac{\xi}{\eta}$$

Conductivity scales with $\sigma \propto \xi$

Dynamical critical exponent $z \simeq 3$ in Model H

1. We can think of electric field generated by chemical potential slope

$$\partial_t \hat{s} = -\nabla \cdot j = -\sigma \nabla \cdot E = \sigma \nabla \cdot \underbrace{\nabla \mu}_{=-E} = \underbrace{\frac{\sigma}{\chi}}_{=D} \nabla^2 \hat{s}$$

2. Diffusion constant scales with

$$D = \frac{\sigma}{\chi} \sim \frac{\xi}{\xi^2} = \frac{1}{\xi}$$

3. Time scale of diffusion for wavelength ξ

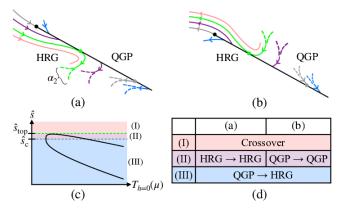
$$\frac{1}{t} \sim D\nabla^2 \sim \frac{1}{\xi} \cdot \frac{1}{\xi^2} \sim \frac{1}{\xi^3}, \quad t \sim \xi^3 (=:\xi^z) \quad \therefore z \simeq 3$$

Relaxation time diverges $\propto \xi^z$ (critical slowing down)

Dynamical simulations of critical models

Langevin models for critical fluctuations

$$\dot{\phi} = \{\phi, H\} - \gamma \delta H / \delta \phi + \xi$$

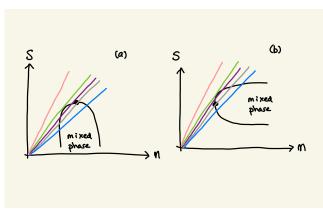

	Model	Method
	Wouer	
[Berges-Schlichting-Sexty (10)]	C	CSS ¹
[Schlichting-Smith-vonSmekal (20)]	G	CSS
[Schweitzer-Schlichting-vonSmekal (20)]	C(A)	CSS (+damping)
[Schweitzer-Schlichting-vonSmekal (22)]	B/BC^2	Langevin
[Nahrgang-Bluhm-Schäfer-Bass (19)]	В	Langevin
[Schäfer-Skokov (22)]	A	Langevin
[Chattopadhyay-Ott-Schäfer-Skokov (23)]	В	Langevin + KZ scaling
[Chattopadhyay-Ott-Schäfer-Skokov (24)]	Н	Langevin
[Florio-Grossi-Soloviev-Teaney (22)]	G	Langevin
[Florio-Grossi-Soloviev-Teaney (24)]	G	Langevin

Basically, they confirm the known dynamical scaling exponents

 $^{{}^{1}}CSS = Classical Statistical Simulation, i.e. initial distribution + Hamilton dynamics {}^{2}BC = A$ certain limit conserving energy, with a propagating mode unlike in D

Isentropic trajectories on QCD phase diagram

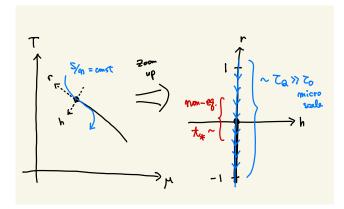
Ideal hydrodynamics follows isentropic trajectories Non-monotonicity of s/n on $T_{h=0}(\mu)$



[Pradeep-Sogabe-Stephanov-Yee (24)]

Passing the QCD critical point \rightarrow What can we expect as a signal?

Isentropic trajectories on QCD phase diagram


Ideal hydrodynamics follows isentropic trajectories Non-monotonicity of s/n on $T_{h=0}(\mu)$

Generalization of Fig.1 of [Akamatsu-Teaney-Yan-Yin (19)]

Passing the QCD critical point \rightarrow What can we expect as a signal?

QCD critical point in an expanding system

Trajectory on the Ising phase diagram

$$r(t) = t/\tau_Q, \quad h(t) = 0, \quad \xi(t) \sim \ell_o |r(t)|^{-\nu} \quad (\nu \approx 0.5)$$

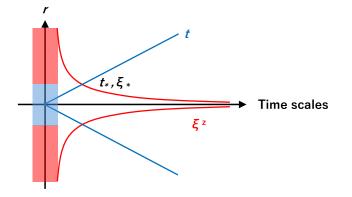
Slow passing vs critical slowing down [Chandran-Erez-Gubser-Sondhi (12)]

1. Relaxation time for modes $k \sim 1/\xi(t)$

$$au_R(t) = au_o \left(rac{\xi(t)}{\ell_o}
ight)^z$$
 critical slowing down $\xi o \infty$

2. Effective time scales near the critical point

Power-laws of
$$r(t) \rightarrow \frac{\dot{r}(t)}{r(t)} = \frac{1}{t}$$

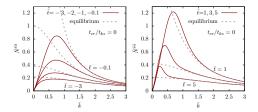

3. Scales when the critical mode ξ starts to get out of equilibrium

$$\underbrace{t_* = \tau_o \left(\frac{\xi(t_*)}{\ell_o}\right)^z \sim \tau_o \left(\frac{t_*}{\tau_Q}\right)^{-\nu z}}_{=} \to t_* = \tau_o \left(\frac{\tau_Q}{\tau_o}\right)^{\frac{\nu z}{1+\nu z}}, \quad \ell_* = \xi(t_*)$$

passing vs relaxation

$$\tau_o \ll \underbrace{t_* \ll \tau_Q}_{r(t_*) \ll 1}, \quad \ell_o \ll \ell_* = \ell_o \left(\frac{\tau_Q}{\tau_o}\right)^{\frac{\nu}{1+\nu z}} \ll \underbrace{\ell_o \left(\frac{\tau_Q}{\tau_o}\right)^{\frac{1}{2}}}_{\text{kinetic regime}}$$

Time scales


Kibble-Zurek scaling [Chandran-Erez-Gubser-Sondhi (12)]

1. In the slow passing limit $\tau_Q/t_o \gg 1$, new scaling with t_* and ℓ_*

$$\langle \phi(t_1, x_1) \phi(t_2, x_2) \rangle = \left(\frac{1}{\ell_*}\right)^{2\Delta} \mathcal{G}\left(\frac{t_1}{t_*}, \frac{t_2}{t_*}, \frac{x_1 - x_2}{\ell_*}\right) \quad : \quad \mathsf{KZ} \text{ scaling}$$

2. Mean field approx. of model B & H [Akamatsu-Teaney-Yan-Yin (19)]

 $ar{N}_{\hat{s}\hat{s}}(t,k) = N_{\hat{s}\hat{s}}(t,k)/C_p(t_*), \quad {
m Note:} \ \hat{s} = n\Delta(s/n) \ {
m in \ this \ paper}$

Correlation enhances to $C_p(t_*)$ for $k_* \sim 1/\ell_*$

Fluctuation $\propto C_p(t_* \neq 0)$ is finite even in the luckiest case

How to relate with observables? [Akamatsu-Teaney-Yan-Yin (19)]

1. Baryon number fluctuation

$$\hat{n} \equiv s\delta\left(\frac{n}{s}\right) = -\frac{n}{s}\hat{s}$$
$$N_{\hat{n}\hat{n}}(t_*, k_*) \sim \left(\frac{n}{s}\right)^2 C_p(t_*) \propto \ell_*^{2-\eta} \propto \left(\frac{\tau_Q}{\tau_o}\right)^{\frac{\nu(2-\eta)}{1+\nu_z}}$$

2. Numerical estimate

$$\begin{split} \epsilon &\equiv \frac{\tau_o}{\tau_Q} \sim \frac{2 \text{ fm}}{10 \text{ fm}} \sim 0.2, \quad \frac{N_{\hat{n}\hat{n}}(t_*,k_*)}{\text{baseline}} \sim \epsilon^{-0.43} \sim 2, \\ \ell_* &= \ell_o \epsilon^{-0.22} \sim 1 \text{ fm} \times 1.4 = 1.4 \text{ fm} \end{split}$$

3. Two particle correlation enhanced at relatively short distance

$$\frac{\left\langle \frac{dN}{d\eta_1} \frac{dN}{d\eta_2} \right\rangle}{\left\langle \frac{dN}{d\eta_1} \right\rangle \left\langle \frac{dN}{d\eta_2} \right\rangle} \bigg|_{\Delta p \sim 140 \text{ MeV}} \sim 200\%$$

Numbers are not quantitative!!

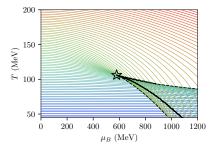
Contents

- 1. QCD critical point in the phase diagram
- 2. Critical point search in heavy-ions: static properties
- 3. Critical point search in heavy-ions: dynamical properties
- 4. Summary

Critical point search: current status and future

- 1. Location and existence of QCD critical point is still unclear
- 2. Experimental data on kurtosis updated and peak is gone
- 3. Investigation of nonequilibrium effect by Kibble-Zurek scaling
- 4. Within a few years, Kibble-Zurek scaling will be simulated
 - Semi-analytical studies? Mode coupling (or FRG) for model H? [Kitao-Akamatsu+, in progress?]
- 5. Electromagnetic probes?
 - Dileptons from NJL calculation [Nishimura-Kitazawa-Kunihiro (23)]
 - Photons from model H + phonon calculation [Akamatsu-Asakawa-Hongo-Stephanov-Yee, in prep.]
- 6. Heavy quark probes?
 - Unlikely for model H / likely for model B [Akamatsu-Asakawa (24)]

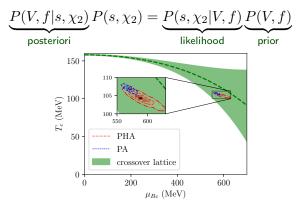
Backup slides


What can we learn from χ_{2-8} ? – Black hole engineering (1/2)

1. Black hole solutions of Einstein-Maxwell-Dilaton equations

$$S = \frac{1}{2\kappa_5} \int_{\mathcal{M}_5} d^5 x \sqrt{-g} \Big[R - \frac{(\partial \phi)^2}{2} - \underbrace{V(\phi)}_{s^{\text{lat}}} - \frac{F_{\mu\nu}^2}{4} \underbrace{f(\phi)}_{\chi_2^{\text{lat}}} \Big]$$

Determine V(\$\phi\$) and f(\$\phi\$) by fitting \$s^{lat}(T, \$\mu = 0\$) and \$\chi_2^{lat}(T, \$\mu = 0\$)\$
 Introduce dilaton \$\phi\$ for non-conformal systems


2. Calculate the phase diagram for a particular $V(\phi)$ and $f(\phi)$

[Hippert et al, 2309.00579]

What can we learn from χ_{2-8} ? – Black hole engineering (2/2)

3. Systematics with Bayesian inference

[Hippert et al, 2309.00579]

- ▶ PHA and PA: parametrizations of $V(\phi)$ and $f(\phi)$ with ~ 10 parameters
- No critical point in 20% of prior samples
- Predicts a critical point at $(T_c, \mu_c) \sim (105 \text{ MeV}, 580 \text{ MeV})$