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Introduction: multi-branch structure of SU(N) YM

𝜃

𝐸(𝜃)

Monopole-condensed 
vacuum

(-1,1) dyon-condensed 
vacuum

𝜃 = 2𝜋

In modern terminology, these vacua are classified as the SPT phases of ℤ𝑵
[𝟏]

symmetry, 

labelled by ℤ𝑵.
(It is expected that the shift 𝜃 → 𝜃 + 2𝜋𝑁 does not change the vacuum branch.)

cf.) Large-N → multi-branch 
quadratic function structure
[Witten ‘80]

𝜽-dependence of SU(N) Yang-Mills vacuum (multi-branch structure)



Introduction: chiral Lagrangian

• Low-energy effective theory of QCD: 𝑆𝑈(𝑁𝑓) Chiral Lagrangian

Light pseudoscalar mesons: Nambu-Goldstone bosons of (approximate) 𝑆𝑈 𝑁𝑓 chiral

⇒ 𝑆[𝑈] =  𝑓𝜋
2 𝑑𝑈 2 − Λ3tr 𝑀𝑈 + 𝑐. 𝑐.

• Chiral Lagrangian with η’

Sometimes, one includes η’ by considering 𝑈(𝑁𝑓) chiral Lagrangian and adds the instanton-induced η’ 
mass term (Kobayashi-Maskawa-’t Hooft vertex).

⇒ 𝑆[𝑈] =  𝑓𝜋
2 𝑑𝑈 2 − Λ3tr 𝑀𝑈 − Δ e−i𝜃 det 𝑈 + 𝑐. 𝑐.

mass matrix from quark mass

(vague) main question: where is the YM vacuum label?
e.g.) Flavor-symmetric QCD has discrete anomaly at 𝜃 = 𝜋 when gcd 𝑁, 𝑁𝑓 ≠ 1 , so it would be natural that some N-

dependence appears in its low-energy description.

Ambiguity with η’ mass? 
cf.) log det(𝑈) in large-N



Short summary

(vague) main question: 
where is the YM vacuum label (in chiral Lagrangian)?

Our suggestion (from 2d semiclassics): 
η’ extends its periodicity by N, eating YM vacuum label



This work: We investigate QCD vacuum structure through semiclassical analysis on 
ℝ𝟐 × 𝑇2 with ‘t Hooft flux (+ baryon magnetic flux), assuming the adiabatic continuity.

Method: Semiclassics via compactification

Motto: deforming SU(N) YM/QCD to weakly-coupled one with keeping confinement.

weak coupling

size of compactified 𝑇2

“adiabatic continuity” (confinement phase, w/o transition)

want to know

Main ansatz: adiabatic continuity conjecture

 Empirically, this method successfully gives a reasonable picture for confining vacuum in SU(N) YM, SU(N) N=1 SYM, QCD(F), 
QCD(Sym), QCD(AS), QCD(BF) [Tanizaki-Ünsal ‘22 ‘23][Tanizaki-YH-Watanabe ’23 ‘24]. (cf. [Yamazaki-Yonekura ‘17])  

This work: expanding analysis for QCD(F).



SU(N) YM on ℝ2 × 𝑇2 with ‘t Hooft flux
[Tanizaki-Ünsal ’22, ……] (cf. [Yamazaki-Yonekura ‘17])

• ‘t Hooft flux for 𝑻𝟐 (or ℤ𝑵
[𝟏]

background)

A unit ‘t Hooft flux ⇔ choose 𝑔3 0 𝑔4 𝐿 𝑔3
† 𝐿 𝑔4

† 0 = 𝑒
2𝜋i

𝑁 .

(𝑔3 𝑥4 , 𝑔4 𝑥3 : transition functions on 𝑇2 )

Up to gauge, we can take 𝑔3 = 𝑆, 𝑔4 = 𝐶 (shift and clock matrices of 𝑆𝑈(𝑁)).

• Consequences from ‘t Hooft-twisted compactification

✓Center symmetry is kept at small 𝑻𝟐

Classically, 𝑃3 = 𝑆 and 𝑃4 = 𝐶 ⇒ tr 𝑃3 = tr 𝑃4 = 0.

✓Perturbatively gapped gluons: O(1/NL) KK mass 

✓Numerical evidence for center vortex/fractional instantons (as a local solution)
[Gonzalez-Arroyo–Montero ’98, Montero ’99, ……]

• Dilute gas of center vortices → Confinement, multi-branch vacuum structure

𝑥3

𝑥4
𝑔4(𝑥3)

𝑔3(𝑥4)

𝑎 Ԧ𝑥, 𝑥3 + 𝐿, 𝑥4 = 𝑔3
†𝑎𝑔3 − i 𝑔3

†d𝑔3

𝑎 Ԧ𝑥, 𝑥3, 𝑥4 + 𝐿 = 𝑔4
†𝑎𝑔4 − i 𝑔4

†d𝑔4

𝑻𝟐

e.g.) 𝑁 = 3

𝑆 =
0 1 0
0 0 1
1 0 0

, 𝐶 =

1 0 0

0 𝑒
2𝜋𝑖

3 0

0 0 𝑒
4𝜋𝑖

3



Semiclassics on ℝ𝟐 × 𝑇2 in 𝑆𝑈(𝑁) YM [Tanizaki-Ünsal ‘22]

• Dilute gas of center vortices

The center-vortex and anti-center-vortex vertices are:

𝐾𝑒
−

8𝜋2

𝑁𝑔2+𝑖 𝜃/𝑁
, 𝐾𝑒

−
8𝜋2

𝑁𝑔2−𝑖 𝜃/𝑁

with a dimensionful constant 𝐾. 

Then, the dilute gas approximation yields, (only configurations with 𝑄𝑡𝑜𝑝 ∈ ℤ are admitted)

𝑍𝑌𝑀 = 

𝑛, ഥ𝑛 ≥0

1

𝑛! ത𝑛!
𝛿𝑛− ഥ𝑛 ∈𝑁ℤ 𝑉𝐾𝑒

−
8𝜋2

𝑁𝑔2+𝑖
𝜃
𝑁

𝑛

𝑉𝐾𝑒
−

8𝜋2

𝑁𝑔2−𝑖
𝜃
𝑁

ത𝑛

= 

𝑘∈ℤ𝑁

exp −𝑉 −2𝐾𝑒
−

8𝜋2

𝑁𝑔2 cos
𝜃 − 2𝜋𝑘

𝑁

One can also derive area-law falloff of the Wilson loop from the dilute gas of center vortices.

Energy density of k-th vacuum
→multibranch structure!

N semiclassical vacua

𝜃

𝐸(𝜃)

𝑘 = 0
[monopole]

𝑘 = 1
[dyon]

For calculating partition function, we 
compactify ℝ2 without ‘t Hooft flux.

⇒ total topological charge is 
constrained 𝑄𝑡𝑜𝑝 ∈ ℤ



Setup for QCD [Tanizaki-Ünsal ’22] 

• In the presence of fundamental quarks, it is impossible to insert ‘t Hooft flux alone 
(𝑔3 0 𝑔4 𝐿 𝑔3

† 𝐿 𝑔4
† 0 = 𝑒

2𝜋i

𝑁 leads to an inconsistency). 

• To avoid this problem, we also introduce baryon magnetic flux simultaneously: 

𝑇2 𝑑𝐴𝐵 = 2𝜋. (e.g., we can take 𝐴𝐵 =
2𝜋

𝐿2 𝑥3𝑑𝑥4)

Boundary conditions for quarks (in the gauge 𝑔3 = 𝑆, 𝑔4 = 𝐶 ):

• At small 𝑇2 , there is one 2d Dirac “low-energy mode” (⇔without KK mass) per flavor.

(obtained by solving zeromode equation)

𝜓 Ԧ𝑥, 𝑥3 + 𝐿, 𝑥4 = 𝑒𝑖
2 𝜋𝑥4

𝑁𝐿 𝑆†𝜓 Ԧ𝑥, 𝑥3, 𝑥4

𝜓 Ԧ𝑥, 𝑥3, 𝑥4 + 𝐿 =  𝐶†𝜓 Ԧ𝑥, 𝑥3, 𝑥4  

𝑥3

𝑥4
(𝑔4 𝑥3 , 1)

(𝑔3 𝑥4 , 𝑒𝑖
2𝜋𝑥4

𝐿 )

Index theorem “𝑁 × 𝑇2 𝑑𝐴𝑞 = 1”  (𝑈 1 𝐵 = 𝑈 1 𝑞/ℤ𝑁)



Constructing 2d effective theory

𝑁𝑓 = 1 case:

• Low-energy mode: one 2d Dirac fermion (⇔ compact scalar 𝜑)

• Center-vortex vertex: 𝐾𝑒
−

8𝜋2

𝑁𝑔2+𝑖 𝜃/𝑁
“𝑒−𝑖 𝜑/𝑁” from 𝑈 1 chiral spurious symmetry

• Dilute gas approximation 

𝑆 𝜑 = න
1

8𝜋
𝑑𝜑 2 − 𝑚𝜇 cos 𝜑 − 2𝐾𝑒

−
8𝜋2

𝑁𝑔2 cos
𝜑 − 𝜃 − 2 𝜋𝑘

𝑁

𝝋 “eats” the vacuum label 𝒌 ∈ ℤ𝑵 and extends its periodicity to 𝝋 ∼ 𝝋 + 𝟐𝝅𝑵.

𝑁𝑓 ≥ 2 case: the non-abelian bosonization

⇒ 𝑈 𝑁𝑓 1
WZW ( + quark-mass deformation + center-vortex deformation)

⇒ 2d analog of 𝑈(𝑁𝑓) chiral Lagrangian with 𝜂′∼ 𝜂′ + 2𝜋𝑁 & det 𝑈 1/𝑁-type 𝜂′ mass. 

Invariance under
𝜃 → 𝜃 + 𝛼, 𝜑 → 𝜑 + 𝛼

residual gauge 𝑺𝑼 𝑵 → ℤ𝑵



Results

• 2d effective theory on ℝ𝟐

=  2d analog of chiral Lagrangian + periodicity-extended 𝜼′

+ corresponding 𝜼′ mass term det 𝑈 1/𝑁

• This 2d effective theory explains the expected vacuum structure of QCD (phase 
diagram on 𝑚𝑁𝑓e𝑖𝜃):

• 𝜼′ extends its periodicity by absorbing the ℤ𝑵 vacuum label; also for 4d chiral 
Lagrangian, this prescription improves the global aspects.

CP

𝑚 = −𝑚0

𝑚 e𝑖 𝜃𝑁𝑓 = 1:

CP

𝑚𝑁𝑓 e𝑖 𝜃𝑁𝑓 ≥ 2:

𝜂′ ∼ 𝜂′ + 2 𝜋
⇒ 𝜂′ ∼ 𝜂′ + 2 𝜋 𝑁

finite-N version 
of log-det vertex



Application: Dashen phase on (𝑚𝑢 , 𝑚𝑑) plane

with 𝜂 ∼ 𝜂 + 2𝜋𝑁 & det 𝑈 1/𝑁 mass 
From conventional chiral Lagrangian with η
(with det-type mass term)

[Aoki-Creutz ‘14]
Fig. 1 of S. Aoki and M. Creutz,
PRL 112 141603 (2014)

Phase diagram of (1+1)-flavor QCD on (𝑚𝑢 , 𝑚𝑑) plane:
The conventional U(2) chiral Lagrangian with det-type η mass has an artificial 
CP-restored phase (“phase C”). The periodicity extension of η eliminates the 
artificial phase.

𝐶𝑃 

𝑪𝑷 



Summary

We study QCD through semiclassics on ℝ𝟐 × 𝑇2 with ‘t Hooft flux & 𝑈 1 𝐵 magnetic flux

Our results:

• 2d effective theory on ℝ𝟐

=  2d analog of chiral Lagrangian + periodicity-extended 𝜼′

+ corresponding 𝜼′ mass term det 𝑈 1/𝑁

• This 2d effective theory explains the expected vacuum structure of QCD (phase 
diagram on 𝑚𝑁𝑓e𝑖𝜃).

• The periodicity extension of 𝜼′ = inclusion of YM vacuum label

Also for 4d chiral Lagrangian with 𝜼′, the periodicity extension improves global aspects 
(particularly, smooth connection to quenched limit).

𝜂′ ∼ 𝜂′ + 2 𝜋
⇒ 𝜂′ ∼ 𝜂′ + 2 𝜋 𝑁

Center-vortex 
induced mass

describing a confining vacuum by dilute gas 
of center vortices [Tanizaki-Ünsal ‘22]





Backups



Digression: 2d center vortex/fractional instanton

𝑥3 Ԧ𝜎 𝒙, 𝑥3 + 𝐿3

= 𝑆−1 Ԧ𝜎 𝒙, 𝑥3

Φ = 2𝜋 Ԧ𝜈𝑛+1

Φ = 2𝜋 Ԧ𝜈𝑛
monopole 𝜶𝒏

𝑥1

𝑥2

=
Center vortex

The 2d center vortex can be understood as BPS/KK monopole in 3d semiclassics (w/ 
center-stabilizing deformation [Ünsal-Yaffe ‘08])  [YH-Tanizaki ‘24] (cf. [Güvendik-Schäfer-Ünsal; Wandler ’24])

2d center-vortex
3d BPS/KK monopole in (ℝ2 × 𝑆1) × 𝑆small

1

(with ‘t Hooft flux and center-stabilizing deformation for 𝑆small
1 ) 



Technicality: ℤ𝑁 gauging and vacuum label

• Problem: Center-vortex vertex: 𝐾𝑒
−

8𝜋2

𝑁𝑔2+𝑖 𝜃/𝑁
“𝑒−𝑖 𝜑/𝑁” looks ill-defined/non-genuine.

• Keypoint: residual ℤ𝑵 gauge after adjoint higgsing by Polyakov loops ∶ 𝑆𝑈 𝑁 → ℤ𝑁 .

• The residual ℤ𝑁 gauge is vector-like to fermion 𝜓. It couples to 𝜑 magnetically 
𝑖

2 𝜋
න𝑎ℤ𝑁

∧ 𝑑𝜑

Integrating out 𝑎ℤ𝑁
⇒ constraint  𝑑𝜑 ∈ 2𝜋𝑁 ℤ

⇒ It is possible to regard 𝜑 ∈ ℝ/2𝜋𝑁ℤ.  

• In the lift from 2𝜋-periodic field to 2𝜋𝑁-periodic field, there is ℤ𝑁 ambiguity: 𝜑 →
𝜑 + 2𝜋𝑘. This 1-to-N correspondence absorbs the vacuum label 𝑘. In summary,

න 𝐷𝑎ℤ𝑁


𝑘∈ℤ𝑁

න
𝜑∼𝜑+2𝜋

𝐷𝜑 … ⇒ න
𝜑∼𝜑+2𝜋𝑁

𝐷𝜑 …

𝑒−𝑖 𝜑/𝑁 becomes well-defined.

(#fermions) = (#kinks).



2d version of chiral Lagrangian

• For 𝑁𝑓 > 1, we use the non-Abelian bosonization: looks like chiral Lagrangian with η’! 

[ 𝑈 ∈ 𝑈 𝑁𝑓 with 2𝜋𝑁-periodic (det U)]

𝑆 𝑈 = න
1

8𝜋
𝑑𝑈 2 − 𝑚𝜇 tr (𝑈) − 𝐾e

−
8𝜋2

𝑁𝑔2e−𝑖𝜃/𝑁 det 𝑈 1/𝑁 + 𝑐. 𝑐. +𝑆𝑊𝑍𝑊
3𝑑 [𝑈]

Up to gapped η’, this 2d effective theory 

= 𝑇2compactification with 𝑈 1 𝐵 flux of 4d 𝑆𝑈(𝑁𝑓) chiral Lagrangian

න
𝑀3×𝑇2

d𝐴𝐵 ∧
1

24𝜋2
tr 𝑈−1d𝑈 3 ⇒ න

𝑀3

1

12𝜋
tr 𝑈−1d𝑈 3 = 𝑆𝑊𝑍𝑊

3𝑑 [𝑈]

quark-mass deformation 
(if present) Center-vortex-induced η’ mass term

“finite-N version of log-det vertex”

Coupling to 𝑈 1 𝐵

background 



Vacuum structure from 2d effective theory

The 2d effective theory explains the vacuum structure, just by finding potential minima: 

• 𝑵𝒇 = 𝟏 case: the effective potential for 2𝜋𝑁-periodic 𝜑 is, 

𝑉 𝜑 = −𝑚𝜇 cos 𝜑 − 2𝐾𝑒
−

8𝜋2

𝑁𝑔2 cos
𝜑−𝜃

𝑁

• 𝑵𝒇 ≥ 𝟐 case: we take the S𝑈 𝑁𝑓 symmetric ansatz,

𝑈 = 𝑒𝑖 𝜑1 with (log det 𝑈) = 𝑁𝑓𝜑 + 2𝜋𝑘 (−𝜋 < 𝜑 ≤ 𝜋, 𝑘 ∈ ℤ𝑁)

⇒ 𝑉 𝜑 = −𝑁𝑓𝑚𝜇 cos 𝜑 − 2𝐾𝑒
−

8𝜋2

𝑁𝑔2 cos
𝑁𝑓𝜑+2𝜋𝑘−𝜃

𝑁

At  𝜃 = 𝜋, this potential has two degenerate minima: 

(𝜑 = 𝜑∗, 𝑘 = 0) and (𝜑 = −𝜑∗, 𝑘 = 1) CP

𝑚𝑁𝑓 e𝑖 𝜃

CP

𝑚 e𝑖 𝜃

𝜑

𝜑 = 𝜋

𝜑

𝜑 = 𝜋

𝑚 = −𝑚0



Discrete anomaly

• For gcd 𝑁, 𝑁𝑓 = 1, the variables (𝑘, 𝜑) in the S𝑈 𝑁𝑓 symmetric ansatz can be combined into 
single 2𝜋𝑁-periodic one 𝜑: 𝑁𝑓𝜑 + 2𝜋𝑘 ⇒ 𝑁𝑓𝜑 mod 2𝜋𝑁 . Like the mass deformation in 𝑁𝑓 = 1
case, a suitable symmetric deformation can single out a unique gapped vacuum (the absence of 
anomaly).

• For gcd 𝑁, 𝑁𝑓 ≠ 1, the ℤgcd 𝑁,𝑁𝑓
discrete label cannot be absorbed. (Intuitively, quark 

fluctuation only bridges 𝑘-th vacuum and (𝑘 + 𝑁𝑓)-th vacuum, so it cannot split the degeneracy 
of CP-broken vacua: 𝑘 = 0 and 𝑘 = 1.)

• 4d chiral Lagrangian with periodicity-extended 𝜂′ reproduces this discrete anomaly.

(A more essential point is that the coupling  𝜂′𝑑𝐴𝐵 ∧ 𝑑𝐴𝐵 becomes well-defined thanks to the 
periodicity extension.)

Baryon-color-flavor anomaly: 
Flavor-symmetric QCD with 𝑁𝑓 quarks at 𝜃 = 𝜋 has mixed anomaly between 
𝑆𝑈 𝑁𝑓 ×𝑈 1 𝑞

ℤ𝑁
and 𝐶𝑃 if gcd 𝑁, 𝑁𝑓 ≠ 1. [Gaiotto-Komargodski-Seiberg ‘17]
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