eVダークマターの熱生成

と実験的探索

東京都立大 文(Wen Yin) 殷

@熱場の量子論とその応用, 2024/9/9

Talk plan

- Introduction

- •4. Future prospects
- 5. Conclusions

 2. Thermal production of eV dark matter, coldly 3. Experimental search of the eV dark matter

Introduction

Dark matter (DM) and particle property What is DM? Long lived, Neutral, Cold, $\rho_{\rm DM}/s \sim eV$ We do not know the particle property at all.

CMB data

Bullet cluster

Dark matter (DM) and particle property What is DM? Long lived, Neutral, Cold, $\rho_{\rm DM}/s \sim eV$ We do not know the particle property at all.

Dark matter (DM) and particle property What is DM? Long lived, Neutral, Cold, $\rho_{\rm DM}/s \sim eV$ We do not know the particle property at all.

Hints for eV DM: Observations Interestingly, in the huge parameter region, we have coincidences around eV.

 $m_{\phi} \sim eV,$

spin=0

 $g_{\phi\gamma\gamma} \sim 10^{-10} \text{GeV}^{-10}$

The anisotropic cosmic infrared background (CIB) data suggests a decaying DM with

 $m_{\phi} \sim eV$, $g_{\phi\gamma\gamma} \sim 10^{-10} \text{GeV}^{-1}$ Gong et al 1511.01577 IHL -10No IHL $\times 10^{\circ}$ Caputo et al, 2012.09179 <u>,</u>6 $g_{a\gamma\gamma}$ 0³⁰ ્યુંટ 2^{,3}0 2. 2,2 3.00 $m_a(eV)$

The **TeV** γ spectrum gets a better fit by photons from ALP DM

of $m_{\phi} \sim eV$, $g_{\phi\gamma\gamma} \sim 10^{-10} \text{GeV}^{-1}$

Hint for eV DM: ACDM

NASA / WMAP SCIENCE TEAM

Hint for eV DM: ACDM

time, or scale factor a

Hint for eV DM: ACDM

time, or scale factor a

time, or scale factor a

Hint for eV DM: Hot DM paradigm (-1984)e.g. Introduction of Davis et al, Astrophys.J. 292 (1985) 371-394 eV-range DM was special and theoretically well-motivated before the WIMP paradigm. $: n_{\rm DM} \sim T^3,$ $\rho_{\rm DM}/s \sim m_{\rm DM} n_{\rm DM}/T^3 \sim eV$ $m_{\rm DM} \sim eV$ Thermally produced eV DM is too hot. $: P_{\rm DM} \sim T, v_{\rm DM}(T \sim eV) \sim 1$ ->Thermally produced eV DM is excluded.

Hint for eV DM: Hot DM paradigm (-1984)e.g. Introduction of Davis et al, Astrophys.J. 292 (1985) 371-394 eV-range DM was special and theoretically well-motivated before the WIMP paradigm. $: n_{\rm DM} \sim T^3,$ $\rho_{\rm DM}/s \sim m_{\rm DM} n_{\rm DM}/T^3 \sim eV$ $m_{\rm DM} \sim eV$ Thermally produced eV DM is too hot. $: P_{\rm DM} \sim T, v_{\rm DM}(T \sim eV) \sim 1$ true? ->Thermally produced eV DM is excluded.

2. Thermal production of eV dark matter, coldly

 $n_{\rm DM} \sim T^3, \rightarrow m_{\rm DM} \sim eV$ $P_{\rm DM} \ll T, \rightarrow v_{\rm DM}(T \sim eV) \ll 1$

Keyword: bose enhancement

WY, 2301.08735

Setup:

χ_2, ϕ : massless $\chi_1 \text{ mass} : M_1 (\ll T)$ $\frac{\partial f_i[p_i, t]}{\partial t} - p_i H \frac{\partial f_i[p_i, t]}{\partial p_i} = C^i[p_i, t],$ **Equations:** $C^{\phi} = \frac{1}{2E_{\phi}a_{\phi}} \sum \int d\Pi_{\chi_1} \, d\Pi_{\chi_2}$ $\begin{aligned} &(2\pi)^4 \delta^4(p_{\chi_1} - p_\phi - p_{\chi_2}) \times |\mathcal{M}_{\chi_1 \to \chi_2 \phi}|^2 \\ &\times S\left(f_{\chi_1}[p_{\chi_1}], f_{\chi_2}[p_{\chi_2}], f_\phi[p_\phi]\right) \end{aligned}$

(Initial) conditions: χ_1 is always thermalized, while χ_2 and ϕ are absent initially, + rotational invariance H = 0 for a while.

 $\chi_1(\text{fermion}) \leftrightarrow \chi_2(\text{fermion})\phi(\text{DM})$.

WY 2301.08735

 $S \equiv f_{\chi_1}[p_{\chi_1}](1 \pm f_{\chi_2}[p_{\chi_2}])(1 + f_{\phi}[p_{\phi}])$ $- (1 \pm f_{\chi_1}[p_{\chi_1}])f_{\phi}[p_{\phi}]f_{\chi_2}[p_{\chi_2}]$

Burst production of DM ϕ turns out

Three stages of burst production: 1. Ignition 2. Burst 3. Saturation

 $(T = 10M_1)$

10

Burst production of DM ϕ turns out

Three stages of burst production: 1. Ignition 2. Burst 3. Saturation

 $(T = 10M_1)$

10

Stage 1: Ignition -Occupation number at $p_{\phi} \sim p$

Stage 1: Ignition -Occupation number at $p_{\phi} \sim p$

Stage 1: Ignition -Occupation number at $p_{\phi} \sim p$

Stage 1: Ignition

Stage 1: Ignition

Stage 1: Ignition

Stage 2: Burst p_{ϕ}^{burst} modes grow exponentially in time.

$$\rightarrow \chi_2[p_{\chi_2} \sim p_{\chi_1}] + \phi[p_{\phi}^{\text{burst}} \ll p_{\chi_1}]$$

With $f_{\phi}[p \sim p_{\phi}^{\text{burst}}] \gtrsim 1, f_{\chi_2}[p \sim T] \ll 1$

 $S \equiv f_{\chi_1}[p_{\chi_1} \sim T](1 \pm f_{\chi_2}[p_{\chi_2} \sim T])(1 + f_{\phi}[p_{\phi} \sim p_{\phi}^{\text{burst}}]$ $-(1 \pm f_{\chi_1}[p_{\chi_1} \sim T])f_{\phi}[p_{\phi} \sim p_{\phi}^{\text{burst}}]f_{\chi_2}[\gamma_{\chi_2} \sim T]$ $\sim f_{\chi_1}[p_{\chi_1} \sim T](1 + f_{\phi}[p_{\phi} \sim p_{\phi}^{\text{burst}}]))$

 $\dot{f}_{\phi}[p_{\phi} \sim p_{\phi}^{\text{burst}}] \sim \Delta t_{\text{iginition}}^{-1} f_{\chi_1}(p_{\chi_1} \sim T)(1 + f_{\phi}[p_{\phi} \sim p_{\phi}^{\text{burst}}])$

Stage 2: Burst p_{ϕ}^{burst} modes grow exponentially due to Bose enhancement. c.f. laser. **10**¹⁰ $10^{-3}\Delta t_{ignition}$ 11∆t_{ignition} d During Before Ignition emission emission 13∆t_{ignition} : 10⁻²∆t_{ignition} XI 15∆t_{ignition} 10⁻¹∆t_{ignition} _∆t_{ignition} 10⁵ 3∆t_{ignition} $10^{-1}\Delta t_{decay}$ ΔE Burst 5∆t_{ignitior} 10∆t_{decay} 7∆t_{ignitio} χ_2 9∆t_{ianiti} f_{ϕ} Atom in excited state 10⁻⁵ 10⁻¹⁰ 10^{-4} 0.001 0.010 0.100 10

 p_{ϕ}/T

 $(T \sim 10M_1)$

Stage 3: Saturation (quasi-equilibrium) The burst production stops and the spectrum is kept for a long time.

Stage 3: Saturation (quasi-equilibrium)

Stage 3: Saturation (quasi-equilibrium)

Stage 3: Saturation (quasi-equilibrium) The burst production stops due to the inverse decay when $f_{\chi_2}[p_{\chi_2} \sim T] \sim f_{\chi_1}[p_{\chi_1} \approx p_{\chi_2}]$, c.f. thermal equilibrium.

 $C^{\phi} = \frac{1}{2E_{\phi}q_{\phi}} \sum \int d\Pi_{\chi_1} \, d\Pi_{\chi_2}$ $S \equiv f_{\chi_1}[p_{\chi_1} \sim T](1 \pm f_{\chi_2}[p_{\chi_2} \sim T])(1 + f_{\phi}[p_{\phi} \sim p_{\phi}^{\text{burst}}])$ $-(1 \pm f_{\chi_1}[p_{\chi_1} \sim T])f_{\phi}[p_{\phi} \sim p_{\phi}^{\text{burst}}]f_{\chi_2}[p_{\chi_2} \sim T]$ $(2\pi)^4 \delta^4(p_{\chi_1} - p_{\phi} - p_{\chi_2}) \times |\mathcal{M}_{\chi_1 \to \chi_2 \phi}|^2 \\ \times S\left(f_{\chi_1}[p_{\chi_1}], f_{\chi_2}[p_{\chi_2}], f_{\phi}[p_{\phi}]\right)$ ~ $(f_{\chi_1}[p_{\chi_1} \approx p_{\chi_2}] - f_{\chi_2}[p_{\chi_2} \sim T])f_{\phi}[p_{\phi} \sim p_{\phi}^{\text{burst}}]$

 $\dot{f}_{\phi}[p_{\phi} \sim p_{\phi}^{\text{burst}}] \sim 0$

With $f_{\phi}[p \sim p_{\phi}^{\text{burst}}] \gg 1, f_{\chi_2}[p_{\chi_2} \sim T] \sim 1$

Stage 3: Saturation (quasi-equilibrium) The number density of χ_2 at $p_{\chi_2} \sim T$ is $g_{\chi_2}T^3$. Since $\dot{n}_{\chi_{\gamma}} = \dot{n}_{\phi} \text{ in } \chi_1 \leftrightarrow \chi_2 \phi$, we have $n_{\phi} = n_{\chi_{\gamma}}$. χ_2 occupation# ϕ number density $(b_{\phi}/T)^{3} f_{\phi}$ 0.001 f_{χ_2} 10^{-6} 10⁻⁹ 10^{-9} 0.001 10^{-4} 0.001 0.010 0.100 p_{χ_2}/T

Stage 3: Saturation (quasi-equilibrium) The number density of χ_2 at $p_{\chi_2} \sim T$ is $g_{\chi_2}T^3$. Since $\dot{n}_{\chi_{\gamma}} = \dot{n}_{\phi} \text{ in } \chi_1 \leftrightarrow \chi_2 \phi$, we have $n_{\phi} = n_{\chi_{\gamma}}$. $n_{\phi} \sim g_{\chi_2} T^3, p_{\phi} \sim M_1^2/T$, which is cold χ_2 occupation# $(b_{\phi}/T)^{3} f_{\phi}$ 0.001 f_{χ_2} 10^{-6} 10⁻⁹ 10^{-9} 0.001 10^{-4} 0.001 0.010 0.100 p_{χ_2}/T p_{ϕ}/T

Let's introduce cosmological expansion

time(log)

Burst production in expanding Universe If there is a period, $T = T_{prod}$, satisfying

$$\frac{M_1^4}{T_{\text{prod}}^4} \frac{1}{\Delta t_{\text{ignition}}} \sim \left(\frac{1}{T_1}\right)$$

ϕ is burst produced. Later the comoving number density is frozen due to redshift and kinematics.

Simplified model. $T \propto a^{-1}$ $p_{\phi}^{\rm DM} \propto a^{-1}$ $p_{\phi}^{\text{burst}} \sim M_1^2 / T \propto a$

 $\frac{M_1}{T_{\rm prod}}\Gamma_{\rm decay}^{\rm (proper)}\right) \ll H \ll 1/\Delta t_{\rm iginition},$

 p_{x}

Burst production in expanding Universe If there is a period, $T = T_{prod}$, satisfying

$$\frac{M_1^4}{T_{\text{prod}}^4} \frac{1}{\Delta t_{\text{ignition}}} \sim \left(\frac{1}{T_1}\right)$$

ϕ is burst produced. Later the comoving number density is frozen due to redshift and kinematics.

Simplified model. $T \propto a^{-1}$ $p_{\phi}^{\rm DM} \propto a^{-1}$ $p_{\phi}^{\text{burst}} \sim M_1^2 / T \propto a$

 $\frac{M_1}{T_{\rm prod}}\Gamma_{\rm decay}^{(\rm proper)}\right) \ll H \ll 1/\Delta t_{\rm iginition},$

 p_{x}

Burst production in expanding Universe If there is a period, $T = T_{prod}$, satisfying

$$\frac{M_1^4}{T_{\text{prod}}^4} \frac{1}{\Delta t_{\text{ignition}}} \sim \left(\frac{1}{T_1}\right)$$

ϕ is burst produced. Later the comoving number density is frozen due to redshift and kinematics.

Simplified model. $T \propto a^{-1}$ $p_{\phi}^{\rm DM} \propto a^{-1}$ $p_{\phi}^{\text{burst}} \sim M_1^2 / T \propto a$

 $\frac{M_1}{T_{\rm prod}}\Gamma_{\rm decay}^{\rm (proper)}\right) \ll H \ll 1/\Delta t_{\rm iginition},$

Burst Production during Reheating.

time

•Radiation dominated era:

 $\Delta t_{\text{ignition}}^{-1} \propto a^{-3}$ v.s. $H \propto a^{-2}$

•Reheating era:

 $\Delta t_{\text{ignition}}^{-1} \propto a^{-9/8}$ v.s. $H \propto a^{-3/2}$

•The stage 3, saturation, is reached at the end of reheating because $f_{\chi_2}(T)$

is no more diluted.

Alternatively, DM can be burst produced during χ_1 thermalization (i.e. χ_1 is not always thermalized).

Burst Production during Reheating.

 $\Delta t_{\text{ignition}}^{-1} \propto a^{-3}$ v.s. $H \propto a^{-2}$

•Reheating era:

 $\Delta t_{\text{ignition}}^{-1} \propto a^{-9/8}$ v.s. $H \propto a^{-3/2}$

•The stage 3, saturation, is reached at the end of reheating because $f_{\gamma_2}(T)$

is no more diluted.

Alternatively, DM can be burst produced during χ_1 thermalization (i.e. χ_1 is not always thermalized).

ϕ is dominantly produced at the end of reheating

: $n_{\phi} \sim g_{\chi_2} T_R^3, p_{\phi} \sim M_1^2 / T_R @ T = T_R$

Explaining abundance of DM gives $m_{\phi} = 50 \text{eV} \frac{4}{g_{\chi_2}} \frac{g_{\star,s[T_R]}}{100} = [1 - 100] eV$ Coldness (Lyman lpha bound $L_{ m FS} < 0.06 { m Mpc}$) requires $\frac{M_1}{T_{\rm prod}} \lesssim 0.02 \left(\frac{g_{s\star}[T_{\rm prod}]}{100}\right)^{1/6} \sqrt{\frac{m_{\phi}}{\epsilon V}}.$

Comment: the difference between usual hot DM and burst production with $\chi_1 \leftrightarrow \phi \chi_2$

Usual Hot DM scenario

=> eV mass for DM abundance Comoving momentum is $p_{\rm comoving} \sim a_{\rm prod} T_{\rm prod}$ => hot

Burst production

 $\int_{-\infty}^{\infty} \left(\frac{T}{M_1}\right)^3 \Gamma_{\chi_1 \to \chi_2 \phi}^{(\text{proper})} > \frac{M_1}{T} \Gamma_{\chi_1 \to \chi_2 \phi}^{(\text{proper})} > H \text{ at } T = T_R \qquad \prod_{k=1}^{\infty} \left(\frac{T}{M_1}\right)^3 \Gamma_{\chi_1 \to \chi_2 \phi}^{(\text{proper})} > H > \frac{M_1}{T} \Gamma_{\chi_1 \to \chi_2 \phi}^{(\text{proper})} \text{ at } T = T_R$ $n_{\phi} \sim g_{\phi}T^3$ from thermal equilibrium $n_{\phi} \sim g_{\chi_2}T^3$ from quasi-equilibrium of bose-enhancement dynamics II => eV mass for DM abundance Comoving momentum is $p_{\rm comoving} \sim a_{\rm prod} M_1^2 / T_{\rm prod}$ $\Box => cold$

0.100 $\begin{bmatrix} D_{\phi_1}^{3} & D_{\phi_1}^{3} \\ D_{\phi_1} & D_{\phi_1}^{3} \\ 0.001 & 0.001 \\ 0.001 & 0.001 \end{bmatrix}$

eV ダークマターはやはり特別だった!

3. eV ダークマターの実験的探索

Hints for eV DM: Interestingly, in the huge parameter region, we have coincidences around eV.

The anisotropic cosmic infrared background (CIB) data suggests a decaying DM with

 $m_{\phi} \sim eV$, lifetime ~ 10¹⁶yrs

 $m_{\phi} \sim eV,$

spin=0

lifetime ~ 10^{16} yrs

The **TeV** γ spectrum gets a better fit by photons from ALP DM

of $m_{\phi} \sim eV$, lifetime ~ 10^{16} yrs

理論があって、観測ヒントもあって、

結構有望じゃね?

理論があって、観測ヒントもあって、

結構有望じゃね?

残念ながら、eVダークマター特化実験は

あまりない。

ンドが多め。

eVDMの間接探索の難しさ、バックグラウ

$E_{\gamma} \simeq m_{\rm DM} c^2/2 \sim eV \sim hc/\mu m$:

(近)赤外線輝線 ::冷たい、銀河周りの存在量がわかっている。

- ・銀河まわりから(近)赤外線狭線幅 輝線を探ることで発見可能。
- ・従来では、黄道光、熱輻射などの バックグラウンドが著しいため、 探索は困難。

暗黒物質の質量 = 2eV, 光子結合 = $10^{-10}GeV^{-1}$

eV DM search with WINERED @ Magellan A high-resolution infrared spectrograph is one of the most efficient DM detectors. $\lambda/\delta\lambda \sim 30000$ T. Bessho, Y. Ikeda, WY, 2208.05975

https://www.cfa.harvard.edu

eV DM search with NIRSpec @ JWST A high-resolution infrared spectrograph is one of the most efficient DM detectors. $\lambda/\delta\lambda \sim 3000$ T. Bessho, Y. Ikeda, WY, 2208.05975

See also Janish, Pinetti, 2310.15395, Roy et al, 2311.04987 with blank sky data,

What we have observed

Based on proposals "eV-Dark Matter search with WINERED", Jun 2023, PI. WY Co-I. Ikeda, Bessho "eV-Dark Matter search with WINERED", Nov 2023, PI. WY Co-I. Ikeda, Bessho WY, Ikeda, Bessho, Kobayashi+WINERED team, 2402.07976

Table. I. Obervation logs. Here, Regions 1, 2, and 3 are for Leo V, Tucana II, and Tucana II, respectively. resolution. T_I denotes the total integration time. Simbad, lnger et al 0002110

Object name	Object type	RA(J2000)	DEC(J2000)	Obs. date	J_m	R	T_I (
Leo V	dSph	11:31:09.6	+02:13:12	2023.06.06	_	28,000	36
Tucana II	dSph	22:51:55.1	-58:34:08	2023.11.02	_	$28,\!000$	42
Sky region 1		11:31:56.97	+02:09:19	2023.06.06	_	28.000	18
Sky region 2		22:51:06.5	-57:28:46	2023.11.02	_	$28,\!000$	12
Sky region 3	_	22:38:08.1	-58:24:39	2023.11.02	_	$28,\!000$	12
HD134936	A0V	15:14:41.4	-52:35:42	2023.06.06	9.44	28,000	g

What we have observed

Based on proposals "eV-Dark Matter search with WINERED", Jun 2023, PI. WY Co-I. Ikeda, Bessho "eV-Dark Matter search with WINERED", Nov 2023, PI. WY Co-I. Ikeda, Bessho WY, Ikeda, Bessho, Kobayashi+WINERED team, 2402.07976

Table. I. Obervation logs. Here, Regions 1, 2, and 3 are for Leo V, Tucana II, and Tucana II, respectively. resolution. T_I denotes the total integration time. Simbad, lnger et al 0002110

	Object name	Object type	RA(J2000)	DEC(J2000)	Obs. date	J_m	R	T_I (
Target dSphs	Leo V	dSph	11:31:09.6	+02:13:12	2023.06.06	_	28,000	36
	Tucana II	dSph	22:51:55.1	-58:34:08	2023.11.02	—	28,000	42
	Sky region 1		11:31:56.97	+02:09:19	2023.06.06	—	28.000	18
	Sky region 2		22:51:06.5	-57:28:46	2023.11.02	—	28,000	12
	Sky region 3	_	22:38:08.1	-58:24:39	2023.11.02	—	28,000	12
	HD134936	A0V	15:14:41.4	-52:35:42	2023.06.06	9.44	28,000	ç

Result: subtracting continuous spectra (Only apply to line spectra)

1.8

10⁻⁸

Ikeda et al 2006

WY, Ikeda, Bessho, Kobayashi+WINERED team, 2402.07976

(2+2 hours obs. gave world record) 2.4 2.6 2.0 2.2 $m_{\phi}[eV]$

•4. Future prospects

-超絶感度に向けて-

ダークマター高分散分光観測の弱点

・これ以上は結構むずい。競争率高い。 時間制限がえぐい (c.f. 4時間の観測 v.s. WIMP search O(1)年)。

・ "eV-Dark Matter search with WINERED", May 2024, PI. WY Co-I. Ikeda, Bessho, Kobayashi

は天候の都合によりキャンセル 😥...

・どうする?

- ・既存の高分散分光器(の望遠鏡)は恒星の物理が主要目的で、 超高い**空間分解能**O(0.1)arcsecを持つように設計されている。
- ・ダークマターは銀河中に広がっているので、 空間分解能いらない。
- ・改良の余地がある。

赤外分光によるダークマター探索はまだ本気じゃない。

DRAGON BALL Z, A. Toriyama

- ・既存の高分散分光器(の望遠鏡)は恒星の物理が主要目的で、 超高い**空間分解能**O(0.1)arcsecを持つように設計されている。
- ・ダークマターは銀河中に広がっているので、 空間分解能いらない。
- ・改良の余地がある。

赤外分光によるダークマター探索はまだ本気じゃない。

DRAGON BALL Z, A. Toriyama

eVダークマター特化分光器を開発しちゃえ!

・光学系の空間分解能と明るさと大きさ

Bessho, Ikeda, WY, Paper 13096-274 (SPIE-Conference 13096)

センサー

・光学系の空間分解能と明るさと大きさ

焦点距離入空間分解能入視野*介:.明るさ (*光源の角度依存性がない場合)

Bessho, Ikeda, WY, Paper 13096-274 (SPIE-Conference 13096)

・光学系の空間分解能と明るさと大きさ Bessho, Ikeda, WY, Paper 13096-274 (SPIE-Conference 13096) 焦点距離入空間分解能入視野*了:明るさ* (光源の角度依存性がない場合) S_{lens}, $\Delta \Omega$ ~焦点距離 レンズ

Dark Matter Quest Spectrograph(DMQS)

<1m 口径の望遠鏡に搭載可能なダークマター特化型高分散分光器の設計</p>

Figure 3. The top and front views of the optical layout of the high-resolution mode of the DMQS

Bessho, Ikeda, WY, Paper 13096-274 (SPIE-Conference 13096)

C.f. 最先端天文望遠鏡 マゼラン6.5m口径 JWST6.5m口径

すばる8.3m口径 TMT30m口径(将来)

最先端ではなくなっ てしまったすべての 小口径望遠鏡へ: ダークマター観測を するのだ!

Conclusions:

- い」は誤り。ボーズ統計の効果。
- たくする可能性がある。

「熱生成によるDMの典型的運動量は温度くら

・ホットDMのような模型でeVを予言しつつ、冷

