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e We consider a two-dimensional holographic CFT defined on curved
backgrounds, and by varying the CFT background metric we observe that
"Hawking-Page like” phase transition happens.

 We also consider the gravity dual of the thermal state of the CFT for high
(effective) temperature.
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1. Introduction



AdS/CFT and Holographlc CFTs

AdS/CFT correspondence [Maldacena '97,. >

Quantum gravity on (d + 1)-dim. Anti-de Sitter spacetime (AdS)

CFT
= d-dim. Conformal field theory (CFT)

CFTs, having semi-classical gravity (G < 1) duals, are called Holographic CFTs.

Holographic CFTs are characterized by the following conditions [el-Showk - Papadodimas “11]

1. It has large central charge i.e. many degrees of freedom.
2. It has a small number of operators of low conformal dimension.

3. The correlators of the low-lying operators factorize.

For simplicity, focus on AdS;/CFT».



Hawking-Page transition

» In AdS semi-classical gravity Gy < 1( <> ¢ > 1), dominant saddle
geometries are given by either thermal AdS or AdS black holes depending

on the temperature 7 = ! and system size L; there is a phase transition
between them, ie., Hawking-Page transition [Hawking-Page '83,.

» Low temperature L/ < 1 — thermal AdS . @

 High temperature L/ > 1 — AdS (BTZ) black holes Thermal AdS

* In CFT, this phase transition corresponds to a first-order confinement-
deconfinement phase transition [Witten ’98, Maldacena ’98, ...]:

Thermal AdS — confined phase, BTZ — de-confined phase



Deformation of the CFT Hamiltonian

 Start with the deformation of the the system on the spatial circle with circumstance L
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g : Positive integer, @ : non-negative real parameter

* The spatial inhomogeneity is introduced by the enveloping function
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f(@,6) = 1 — tanh 20(1 — 2sin®(£=) ) = 1 — tanh 2. cos( qz‘”)
At 0 = 0, the Hamiltonian reduces to the uniform one, and at the large-0, it becomes the g-deformed

Sine-square deformed (g-SSD) Hamiltonian.




CFT on a curved background

 The inhomogeneous Hamiltonian is equivalent to the uniform
Hamiltonian on the curved background with the metric

L
Hq— Mobius — 1/0‘ Czl_:_ \/_ det g(m)(T(m) + T(CB)),

ds* = g (z)dztdx’ = — f(z, 0)*dt* + dz?

 The CFT background has the Ricci curvature 0=0.5
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 The CFT background has the Ricci curvature
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Thermal state for the Hamiltonian

* Consider the thermal state of using the Hamiltonian, not having the form of

the uniform one 0 = e BHr s /tr o~ BHy-vobin

* By the conformal maps
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the Hamiltonian is mapped to that having the standard form like the uniform

Hamiltonian,
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» Thus, by using the (y, ¥) coordinates,

the thermal state for the inhomogeneous CFT Hamiltonian with size L

(= CFT Hamiltonian on the curved spacetime)

p p

= the thermal state for the uniform CFT Hamiltonian with replacing — with ————
L L cosh26

(= CFT Hamiltonian on a (conformally) flat spacetime with size L cosh 26)

* In the coordinates, we can use usual techniques for the standard thermal state



Main result

 We studied thermal and entanglement properties of the inhomogeneous

thermal state by changing the parameter @ controlling the CFT
background metric in a two-dimensional holographic CFT.

« We found that, by changing @ with fixing L/ < 1, we observed that
Hawking-Page like phase transition happens.

 We also consider the gravity dual for the inhomogeneous thermal state for

L cosh(20)/p > 1.
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2. Global and Local properties of
Inhomogeneous thermal state



Thermal entropy

* In the (y, ¥) coordinates, the thermal state is given by the usual form with the moduli parameter

Leg L cosh(20)

TMod. — ,B — ,6

 From the conventional analysis of the Hawking-Page phase transition, there is a first-order
phase transition

-~ Thermal AdS; «— g < 1 O(CO) for moq < 1
S Thermal — et Loge
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o Starting with L/ < 1, the system exhibits the phase transition at
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Entanglement entropy

o Define subsystems A, A, and compute the entanglement entropies $, = — Tr [pA log pA]

for their subsystems A
1

Alz{a:Xg::nL<X2<x<X1<qu+1}
q

Ay = {Xz <T<Xi|X] <Xy <X ,Xl, <X <X,,f+l+1}

e To evaluate them, we can use the twist-operator formalism. The Renyi-n entropy is given by
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Entanglement entropy in low effective temperature
T™Mod. < 1

In the large @-limit with keeping low effective temperature regime
L cosh20/p < 1, the entanglement entropy becomes

3 Tqe L
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. If the subsystem does not include fixed points sin“(gzx/L) = 0, the
entanglement entropy is given by the vacuum one with system size L/g.



Entanglement entropy in high effective temperature ™od. > 1

¢ In the large-@ limit,
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 If L/ < 1, the entanglement entropy reduces to the vacuum one with systems size L/q.

e On the other hand, if L/ > 1, it is proportional to 1/, but not simply given by thermal entropy.



e In the large-@ limit,
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 The entanglement entropy is proportional to number of fixed points

sin’(gzx/L) = 0 included in the subsystem A,, i.e. [, and to the effective system
Size
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 Thermal contributions are almost localized at fixed points




First-order phase transition of Entanglement Entropy

e Starting with L/ < 1 and increasing 8, we can see both high and low effective
temperature regions of the entanglement entropies for the two regions A,

q=+4
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* Let us see the relation by considering the mutual information between subsystems,

Alz{w

Mutual information

* The enveloping function is related to a local temperature.
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o If we focus on the uniform case with L/ > 1, 6 = 0, the mutual information is just given by
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iImplying the correlation length (defined by the distance that the mutual information becomes 0)
related to the inverse temperature
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* To find a similar (local) temperature for the inhomogeneous case, we focus on the parameter
regions g =2
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3. Gravity dual to the CFT



Gravity dual to the inhomogeneous thermal state

. Inthe (¥, 7) or (&, &) coordinates, the thermal state for the inhomogeneous Hamiltonian is given
by the usual form.

« Then, the gravity dual to the thermal state for high effective temperature L cosh(260)// > 1 is
given by the standard BTZ black hole [Banados-Teitelboim-Zanelli ‘92]
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* |In the original coordinates,
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* In the large-r region,

2 N dr” j re 2 7.2 2
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This include the (Euclidean) CFT background metric.

* Or, by introducing the new radial coordinate
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* In terms of the new radial coordinates, the horizon radius becomes position-
dependent
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Effective local temperature

* In the new radial coordinates, we can estimate an effective local temperature.

* Let us assume an observer sitting at X; the typical scale of the observer is assumed to be
comparable with the re-scaled horizon radius. Such an observer feels the local effective

temperature A
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Summary and Future directions

* \We studied the thermal state with the CFT Hamiltonian on the curved space

« The CFT Hamiltonian on the curved space is conformally equivalent to that on the flat space with size L cosh(26)

By evaluating the thermal entropy, we found the first-order phase transition by varying the background metric
using @ with fixing L/ < 1.

. If the subsystem includes fixed points sin“(gzx/L) = 0, the entanglement entropy exhibit the first-order phase
transition, but if not, it does not exhibit the phase transition.

e Related works and future directions

 Entanglement dynamics (using the guantum quench and the state-operator mapping) associated with the CFT
Hamiltonian [Bai-Miyata-Nozaki arXiv: 2408.06594 [hep-th]]

* Bulk reconstruction and relative entropy?

 Quantum correlation of 2d Holographic CFTs on the curved space

. Thank you!!



