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• We consider a two-dimensional holographic CFT defined on curved 
backgrounds, and by varying the CFT background metric we observe that 
“Hawking-Page like” phase transition happens.


• We also consider the gravity dual of the thermal state of the CFT for high 
(effective) temperature.
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1. Introduction



AdS/CFT and Holographic CFTs
• AdS/CFT correspondence [Maldacena ’97,…]


Quantum gravity on ( )-dim. Anti-de Sitter spacetime (AdS) 


= -dim. Conformal field theory (CFT) 


• CFTs, having semi-classical gravity ( ) duals, are called Holographic CFTs.


• Holographic CFTs are characterized by the following conditions [El-Showk - Papadodimas ‘11]


1. It has large central charge i.e. many degrees of freedom.


2. It has a small number of operators of low conformal dimension.


3. The correlators of the low-lying operators factorize.


• For simplicity, focus on .
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Hawking-Page transition
• In AdS semi-classical gravity , dominant saddle 

geometries are given by either thermal AdS or AdS black holes depending 
on the temperature  and system size ; there is a phase transition 
between them, ie., Hawking-Page transition [Hawking-Page ’83,…],


• Low temperature    thermal AdS


• High temperature   AdS (BTZ) black holes


• In CFT, this phase transition corresponds to a first-order confinement-
deconfinement phase transition [Witten ’98, Maldacena ’98, …]:                 
Thermal AdS  confined phase, BTZ  de-confined phase

GN ≪ 1( ↔ c ≫ 1)

T = β−1 L

L/β < 1 →

L/β > 1 →

→ →

Thermal AdS BTZ



Deformation of the CFT Hamiltonian
• Start with the deformation of the the system on the spatial circle with circumstance 


 





 : Positive integer,   : non-negative real parameter


• The spatial inhomogeneity is introduced by the enveloping function


• At , the Hamiltonian reduces to the uniform one, and at the large- , it becomes the q-deformed 
Sine-square deformed (q-SSD) Hamiltonian.
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CFT on a curved background
• The inhomogeneous Hamiltonian is equivalent to the uniform 

Hamiltonian on the curved background with the metric


• The CFT background has the Ricci curvature
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• The CFT background has the Ricci curvature
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Thermal state for the Hamiltonian 
• Consider the thermal state of using the Hamiltonian, not having the form of 

the uniform one


• By the conformal maps 


, ,


the Hamiltonian is mapped to that having the standard form like the uniform 
Hamiltonian, 


   



• Thus, by using the  coordinates,


 the thermal state for the inhomogeneous CFT Hamiltonian with size  


(= CFT Hamiltonian on the curved spacetime)


= the thermal state for the uniform CFT Hamiltonian with replacing  with 


(= CFT Hamiltonian on a (conformally) flat spacetime with size )


• In the coordinates, we can use usual techniques for the standard thermal state

(χ, χ̄)
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Main result

• We studied thermal and entanglement properties of the inhomogeneous 
thermal state by changing the parameter  controlling the CFT 
background metric in a two-dimensional holographic CFT.


• We found that, by changing  with fixing , we observed that 
Hawking-Page like phase transition happens. 


• We also consider the gravity dual for the inhomogeneous thermal state for 
.

θ

θ L/β < 1

L cosh(2θ)/β > 1
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2. Global and Local properties of  
inhomogeneous thermal state



Thermal entropy
• In the  coordinates, the thermal state is given by the usual form with the moduli parameter





• From the conventional analysis of the Hawking-Page phase transition, there is a first-order 
phase transition


Thermal AdS   


BTZ black hole


• Starting with , the system exhibits the phase transition at 


(χ, χ̄)

3

L/β < 1



Entanglement entropy 
• Define subsystems  and compute the entanglement entropies  

for their subsystems


• To evaluate them, we can use the twist-operator formalism. The Renyi-  entropy is given by





A1, A2 SA = − Tr [ρA log ρA]

n

A1

A2 q = 4



Entanglement entropy in low effective temperature  

In the large -limit with keeping low effective temperature regime 
, the entanglement entropy becomes








• If the subsystem does not include fixed points , the 
entanglement entropy is given by the vacuum one with system size .
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Entanglement entropy in high effective temperature    
• In the large-  limit, 





• If , the entanglement entropy reduces to the vacuum one with systems size .


• On the other hand, if , it is proportional to , but not simply given by thermal entropy.
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• In the large-  limit,





• The entanglement entropy is proportional to number of fixed points 
 included in the subsystem , i.e.  , and to the effective system 

size 


• Thermal contributions are almost localized at fixed points
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First-order phase transition of Entanglement Entropy
• Starting with  and increasing , we can see both high and low effective 

temperature regions of the entanglement entropies for the two regions

L/β < 1 θ
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Mutual information
• The enveloping function is related to a local temperature. 


• Let us see the relation by considering the mutual information between subsystems,





• If we focus on the uniform case with , , the mutual information is just given by 


,


implying the correlation length (defined by the distance that the mutual information becomes 0) 
related to the inverse temperature


L/β ≫ 1 θ = 0

A1

A′￼1

q = 2

X1

X4

X2

X3



• To find a similar (local) temperature for the inhomogeneous case, we focus on the parameter 
regions


 .


• Then, the mutual information can be evaluated as





This implies the correlation length related to the “effective local temperature” depending on position
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3. Gravity dual to the CFT



Gravity dual to the inhomogeneous thermal state
• In the  or  coordinates, the thermal state for the inhomogeneous Hamiltonian is given 

by the usual form. 


• Then, the gravity dual to the thermal state for high effective temperature  is 
given by the standard BTZ black hole [Banados-Teitelboim-Zanelli ‘92]





• In the original coordinates,


(χ, χ̄) (ξ, ξ̄)

L cosh(2θ)/β > 1
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• In the large-  region,





This include the (Euclidean) CFT background metric.


• Or, by introducing the new radial coordinate 





then, we obtain the standard asymptotic metric


r



• In terms of the new radial coordinates, the horizon radius becomes position-
dependent
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Effective local temperature
• In the new radial coordinates, we can estimate an effective local temperature.


• Let us assume an observer sitting at ; the typical scale of the observer is assumed to be 
comparable with the re-scaled horizon radius. Such an observer feels the local effective 
temperature
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Summary and Future directions
• We studied the thermal state with the CFT Hamiltonian on the curved space


• The CFT Hamiltonian on the curved space is conformally equivalent to that on the flat space with size 


• By evaluating the thermal entropy, we found the first-order phase transition by varying the background metric 
using  with fixing .


• If the subsystem includes fixed points , the entanglement entropy exhibit the first-order phase 
transition, but if not, it does not exhibit the phase transition.


• Related works and future directions


• Entanglement dynamics (using the quantum quench and the state-operator mapping) associated with the CFT 
Hamiltonian [Bai-Miyata-Nozaki arXiv: 2408.06594 [hep-th]]


• Bulk reconstruction and relative entropy?


• Quantum correlation of 2d Holographic CFTs on the curved space


•

L cosh(2θ)

θ L/β < 1

sin2(qπx/L) = 0

⋯ Thank you!!


