Nt=8格子QCD計算による重クォーク領域の QCD臨界点近傍での有限体積スケーリング

新潟大自然, 菅原寛人

新潟大理^A,京大基研^B,筑波大宇宙史セ^C 江尻信司^A,北沢正清^B,金谷和至^C

2023/08/28, 熱場の量子論とその応用, KEK

QCD有限温度相転移のクォーク質量依存性

- QCDにおいてクォーク質量を重くしていった際、 相転移がクロスオーバーから一次相転移に変わる 質量である臨界質量を決定したい。
- QCDの相転移で、どのような対称性が破れているのか、他の模型と比較して検証したい。
- ・以上のことを目的とし、格子QCD計算を用いて 行った我々の重クォーク領域における臨界質量の 先行研究から、さらに格子間隔を細かくした計算 を行い、連続極限をとることを目指す。

⇒閉じ込めの秩序変数であるポリヤコフループに ついて、格子QCDのモンテカルロシミュレーショ ンにより計算し、スケーリング解析を行う。

格子QCDによる臨界点の探索

- 非閉じ込め相転移の秩序変数: Polyakov loop Ω
 - 閉じ込め相で $\langle \Omega \rangle = 0$, 非閉じ込め相で $\langle \Omega \rangle > 0$
- Polyakov loopの期待値

$$\langle \Omega \rangle = \frac{1}{Z} \int \mathcal{D}U \ \Omega \ e^{-S_g + \sum_{N_f} \ln(\det M)}$$

- ゲージ場の作用: $S_g = -6N_{site}\beta P$ ($\beta = 6/g^2$) • フェルミオン場の作用: $S_q = \sum_{f=1}^{N_f} \sum_{x,y} \bar{\psi}_x^{(f)} M_{xy} \psi_y^{(f)}$
 - M_{xv} :Wilson fermionのカーネル
 - 格子QCDの計算では、detMの計算にコストがかかる。
- ・臨界点の決定には、温度・質量の連続関数としての期待値の計算が重要。 • 再重み付け法: $\langle \Omega \rangle_{\beta} = \frac{\int \mathcal{D}U \Omega e^{-S(\beta)}}{\int \mathcal{D}U e^{-S(\beta)}} = \frac{\langle \Omega e^{-\Delta S} \rangle_{\beta_0}}{\langle e^{-\Delta S} \rangle_{\beta_0}}, \ \Delta S = S(\beta) - S(\beta_0)$

 - ΔSの計算にdetMの値が必要。再重み付け法の利用は実用的ではない。

ホッピングパラメータ 床~1/(ma)
h det
$$M(\kappa) = \sum_{n=1}^{\infty} \frac{1}{n!} \frac{\partial^n \ln \det M}{\partial \kappa^n} \kappa^n \equiv N_{\text{site}} \sum_{n=1}^{\infty} D_n \kappa^n$$

 $D_n = \frac{1}{N_{\text{site}}} \frac{(-1)^{n-1}}{n} \operatorname{tr} \left[\left(\frac{\partial M}{\partial \kappa} \right)^n \right] = W(n) + L(N_t, n)$
 $V(n) + L(N_$

・臨界点でのκが小さければ、展開は収束し、臨界点が調べられる。

ホッピングパラメータ展開の展開項の相関 PTEP 2022, 033B05 (2022)

$$\ln \det M(\kappa) = N_{\text{site}} \sum_{n=1}^{\infty} D_n \kappa^n, \qquad D_n = \frac{1}{N_{\text{site}}} \frac{(-1)^{n-1}}{n} \operatorname{tr} \left[\left(\frac{\partial M}{\partial \kappa} \right)^n \right] = W(n) + L(N_t, n)$$

- 周期境界条件で閉じたポリャコフループ型の項 $L(N_t, n)$ が臨界点の決定には重要。
- 各ゲージ配位でホッピングパラメータ展開の各項をノイズ法で計算する。

有効理論によるシミュレーション

- Polyakov loop項を加えた有効作用で、Monte Carloシミュレーションを行う。
- 有効作用は2項 $S_{eff} = 6N_{site}\beta P + N_s^3\lambda Re\Omega$ (β , λ がパラメータ)
- Full QCDのシミュレーションに比べ非常に高速。クエンチQCDと同じぐらい。
- 再重み付け法が簡単にできる。 $\rightarrow \beta, \lambda$ の連続関数として物理量が計算できる。
- 高次項を取り入れる場合は、 $\lambda = N_s^{-3} \sum_{n=N_t}^{n_{\max}} L^0(N_t, n) c_n \kappa_{c,eff}^n$ の読み替えで可能。
- N_t = 8の臨界点の計算では n_{max} = 20程度で十分。[PTEP 2022, 033B05 (2022)]

データセット

Nt=8

λ	β	Ns=48 Ns/Nt=6	Ns=64 Ns/Nt=8	Ns=80 Ns/Nt=10	Ns=96 Ns/Nt=12
0.0006	6.0590	500,000	500,000	500,000	500,000
0.0007	6.0593	500,000	500,000	500,000	500,000
0.0008	6.0580	500,000	500,000	500,000	500,000
	6.0590	500,000	500,000	500,000	500,000
0.0010	6.0570	500,000	500,000	500,000	500,000
	6.0580	500,000	500,000	500,000	500,000
0.0012	6.0565	500,000	500,000	500,000	×
0.0014	6.0550	500,000	500,000	500,000	×
	6.0560	500,000	500,000	500,000	×

表の中の数字は配位数、ゲージ場の配位を5回更新するごとに P, Ω を測定した。

Polyakov loopの分散・歪度・尖度の解析

 λ についても再重み付けし、 β の相転移点を λ についての連続的な関数として決定する。

有限体積スケーリング解析

- Polyakov loop のビンダーキュムラント: $B_4 = \frac{\langle (\Omega \langle \Omega \rangle)^4 \rangle}{\langle (\Omega \langle \Omega \rangle)^2 \rangle^2}$
 - ⇒臨界点で体積依存性が無くなる組み合わせ 臨界点での B_4 はユニバーサリティクラスで決まる。(3Dイジング: $b_4 = 1.604$)

Ns/Nt=12

0.01

ReΩ

0.02

0.03

0.04

0.05

 $96^{3} \times 8$

空間体積→大で 分布の谷が深く

 $B_4 \rightarrow J$

・クロスオーバー側($\lambda = 0.0010$)

空間体積→大で 谷浅くなり平らに B_4 →大

10

[Phys.Rev.D104, 114509(2021)] [北沢氏によるLattice2023のトーク] [Phys.Rev.D103, 014513(2021) (WHOT-QCD) (WHOT-QCD) Cuteri, Philipsen, Schön, Sciarra]

 $\lambda_{c,\text{NLO}} = 0.00503(14)$ $\kappa_{c,\text{NLO}} = 0.0602(4) \approx \kappa_c$ $\lambda_{c,\text{NLO}} = 0.000818(10) \\ \kappa_{c,\text{NLO}} = 0.09003(19) \\ \kappa_{c,\text{22th}} = 0.08781(17) \approx \kappa_c$

(Frankfurt group)

 $\kappa_c = 0.0877(9)$

WHOT-QCDの研究では誤差が小さく、 κ_c を精密に決定することができた。 11

ビンダーキュムラント交差点解析のグラフ

- ・より大きい空間体積(Ns/Nt=15)での計算をしたい。
- ・ λ_c が決まれば、2+1フレーバーでの臨界線を決定することも容易。
- ・臨界点において、ハドロン質量をFullQCDで計算し、
 Nt=4, Nt=6の結果と比較し、連続極限がとれるか議論したい。→ Nt=10も