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Motivation: Understanding of QCD Phase Diagram

@ QCD Phase Diagram
;

© @, 0 Quark-Gluon Plasma?

QCD Critical Point
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New method for classifying phases
Shape-based classifying method
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Configurations of 1+1 d GN model on the lattice

Inhomogeneous phase,
homogeneously broken phase, chiral symmetric phase

Phases
Phase boundary

At low density

Lattice QCD
High-energy heavy-ion collisions

At high density

Interesting phases:
Inhomogeneous phase

X Lattice QCD
experiment ?



Motivation: (1+1)-dimensional Gross-Neveu Model

+ Lagrangian density

2 —

L=y d+ o ($8)° o~ (@)

D. J. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974)

Important features from comparison with QCD
1 Asymptotic freedom
1 Spontaneous symmetry breaking of discrete chiral symmetry

Y=Y, Y — —Ps

1 No sign problem : Monte Carlo simulation
1 Inhomogeneous chiral condensate in large AN(limit 7




Motivation: (1+1)-dimensional GN Model

* Lagrangian density in the continuous theory

L = iy’ 0, —|— (W,D) o ~ () inthe large Nlimit

% Specific ansatz & phase diagram
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O. Schnetz, M. Thies and K. Urlichs, Annals Phys. 314, 425-447 (2004)

‘ [ To calculation without ansatz, we use lattice field theory }

J. Lenz et. al, Phys. Rev. D 101, no.9, 094512 (2020)



Motivation: (1+1)-dimensional GN Model

% Spatial correlators in three phases D lolty+a)o(ty)
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% Classification by minimum of the spatial correlator

> 0, the Homogeneously Broken Phase
Cmin :=minC(2) ¢ ~ 0, the Chiral Symmetric Phase
< 0, the Inhomogeneous Phase
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J. Lenz et. al, PR 101, no.9, 094512 (2020)

Knowledge of Ansatz is used in the interpretation of the results.

‘ [ Can we directly extract the spatial dependence of the configurations a(x) ?

Cmin/U(Z)



Method: Shape-based Clustering Method

+ Difficulty in direct extraction of the spatial dependence

‘ [ The configurations shifted at each Monte Carlo step }

randomly selection: # of configurations = 5

" LoaA M, When we generate enough number of configurations,
o | the expectation value at each point becomes zero.
b \ Af |:> spatial correlators
-0.5 ;V' N | S
10 W | V\/ ! Al Is there a more general and direct method?
Ns ¢ » » » o = =

We need shift-invariant clustering method that focuses on the shape of configurations.

‘ [Time Series Clustering Method }




Method: Shape-based Clustering Method

* Clustering Method

1 Unsupervised Learning
A method for grouping data without labeled training data

1 Itis important to choose a “similarity” that represents how similar two

data points are. 4
A
©000OC
: Q‘J ’ The choice of similarity can lead to
A differences in the data that can be grouped.

Example:

Moon-shaped data are well-suited for
density-based similarity calculations such as
DBSCAN.

ks :15 e  'https://scikit-learn.org/stable/modules/clustering.html 7
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Method: Shape-based Clustering Method

% Time Series Clustering Method

1 One of the Clustering methods
1 Clustering methods for time series (1-dimensional data):
1 Major methods:
Dynamic Time Wraping, K-Shape, k-means, etc... 4

% Simple Example: k-means method with Euclidean distance

/ “Similarity™:

dp(z,y) = V(z —y)?
Note :

k-means method is not well suited for time series data because the
/ similarity decreases when the phase is shifted.




Method: Shape-based Clustering Method

% K-Shape Method

‘ [ This method is characterized by shift-invariance and scale-invariance }

% Shape-based Distance (SBD) : the similarity with shift-invariance
CCFy(01(x), 02(x)) CCF : cross-correlation function
\/AC’F(al (2))ACF (0y(x)) ACF : auto-correlation function

J. Paparrizos, L. Gravano, PROC. ACM SIGMOD Int. Conf. Manage. Data, pp. 1855-1870, 2075

SBD(o1(x),02(x)) =1 — max

w

SBD evaluates similarity
ignoring the phase shift.

10



Method: Shape-based Clustering Method

% Algorithm - Refinement step
1. Shift each data to overlap with the centroid

INPUT with minimized SBD
X is an n-by-m matrix containing n time series of
length m that are initially z-normalized. \
k is the number of clusters to produce. cluster-1

4L shift

L while cluster labels don’t change or iter < max ~j\l\ »

Refinement step

(&

2. Calculate the optimal centroid for each data in

I

I

I

| Assignment step
L

‘ the cluster (Time Series Shape Extraction)
OUTPUT cluster-1 Time Series
IDX is as n-by-1 vector containing the assignment of Shape Extraction
n time series to k clusters (initialized randomly). ‘
C is a k-by-m matrix containing k centroids of
length m (initialized as vectors with all zeros). 11




Method: Shape-based Clustering Method

% Algorithm - Assignment step

length m that are initially z-normalized.

INPUT
X is an n-by-m matrix containing n time series of
k is the number of clusters to produce.

¥

while cluster labels don’t change or iter < max
I
| Refinement step
I
| Assignment step
L

et

n time series to k clusters (initialized randomly).
C is a k-by-m matrix containing k centroids of

OUTPUT
IDX is as n-by-1 vector containing the assignment of
length m (initialized as vectors with all zeros).

Calculate the similarity (SBD) between each
data and the centroid

IV N

‘ ' .zl-- calculation SBD

AI\ /\/ centroid

Assign the centroid with the maximum similarity
to each data

N () )

cluster-1 cluster-2

NN

12




Method: Shape-based Clustering Method

% Modify K-Shape for lattice simulation

The Original K-Shape : we peform zero padding in the refinement step.

/ S
e /\/
0,....0,z1,22, ..., Tm_s, s >0 3
€Tr —
<xl_s,...,xm_l,xm,o,...,o s <0 _/\
N——

\ |51

The Modified K-Shape : we impose periodic boundary condition in the refinement step.

iy — Im—s+1y++-Tm, L1, L2,...,LTm—s, SZO /\/
Ll1—sy s Tm—1,Tms Tm41- -+, L—5 s <0 ‘
/\ s




+ Lattice Simulation Setup

>

vy VY

\

We use a standard hybrid Monte Carlo algorithm.

Lattice discretization of fermions is a naive fermion.

To set the scale, we use the expectation value at zero temperature and zero chemical potential.
We use the same coupling constant as the previous study [J. Lenz et. al, PRD 101, no.9, 094512

(2020)].

The other simulation parameters are described in the table below:
fermion Ny Ngy=L/a Ny=1/Ta g° aoy /oo
naive 8 64 14, 24, 64 1.8132 0.424+0.01 0.0, 0.5, 0.6

* Preprocessing
In the equilibrium, configurations do not have time dependence.
Therefore, we calculate the average of configurations along the time axis.

14



Results: Shape-based Clustering Method

inhomogeneous phase
1] |

% Extraction the spatial dependence of the configurations
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(T/o0, 1u/o0) = (0.037,0.000) (T'/o0, 11/00) = (0.098,0.630)

‘ [ We can extract the spatial dependence without the ansatz! 1 15




Summary:

% Summary
> We applied a shape-based clustering method, a type of unsupervised learning, to the analysis of lattice
configurations.
> We modified the method to make it suitable for lattice calculations, including periodic boundary condition.

S
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0,...,0,z1,22,...,Zm-s, 20 o d Tmmst Ly T, T T2, Ty s>0
Tl sy s Tm-1,Tm,0,...,0 s<0 -

1= rmeh M Ll—ss+ 3 Tm—1Tms Tm41y- -+, L—s s <0

ls|
> We succeeded in extracting the spatial

cluster label = 1, # of configurations = 25000

cluster label = 1, # of configurations = 8000

dependence without the knowledge of ansatz. ..

10
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> We will apply this method to the configurations to classify the phases of GN model.

> We will use this method to other models with spatial dependent phases. .



