

Phenomenologies of QCD equation of state in high-energy nuclear collisions

Akihiko Monnai (Osaka Institute of Technology) AM, J. Phys. G **50**, 095103 (2023)

Thermal Quantum Field Theory and Their Applications 29th August 2023, KEK, Japan

Phase transition of quarks

Protons and neutrons "melt" into quark-gluon plasma (QGP) above around 2 trillion degrees Kelvin

■ Where is the quark-gluon plasma?

The QGP had filled the Universe around 10⁻⁵ seconds after the Big Bang

How to make the quark-gluon plasma on earth

Smash two big nuclei (such as gold or lead) almost at the speed of light

BNL Relativistic Heavy Ion Collider (2000-) CERN Large Hadron Collider (2010-)

What can be observed in nuclear collisions?

T ~ 200-600 MeV (primarily u, d, s, g)

Hadrons

- bulk observables
- informative of the medium "surface" (QGP is color opaque)

Direct photons

- photons w/o decay photons
- informative of the medium "interior" (QGP is electroweak transparent)

Charged leptons, weak bosons, etc.

 $1 \text{ GeV} \simeq 1.6 \times 10^{-10} \text{J}$ $1 \text{ GeV}/c \simeq 5.3 \times 10^{-19} \text{kg} \cdot \text{m/s}$

Momentum distribution of charged hadrons

Low momentum region (< 2-4 GeV)

Hydrodynamic model (strongly-coupled)

Mid-high momentum region (> 4-5 GeV)

perturbative QCD (weakly-coupled)

Motivation

Relativistic hydrodynamic model

A caveat of the conventional model: Equation of state & particle production include the contribution of high-momentum particles

This work

"Red" hydrodynamic model

*low momentum = long wavelength = "red"

We introduce an upper limit (p_c) for the momenta of strongly-coupled components

Equation of state

Results

Effects of momentum cutoff is larger at higher temperatures; mostly negligible in the hadronic phase

 $0.1 \text{ GeV} \simeq 1.16 \times 10^{12} \text{K}$

Hydrodynamic evolution

■ (2+1)-dimensional inviscid model

AM, PRC 90, 021901(R) (2014)

Initial condition: Monte-Carlo Glauber model (event-averaged) 2.76 TeV Pb+Pb collisions at b = 4.6 fm (~ 0-20%)

```
Initial time: \tau_{ini} = 0.4 fm/c
```

```
Freezeout temperature: T_f = 140 \text{ MeV}
```

Thermal photon estimated down to: $T_{ph} = 110 \text{ MeV}$

Hadronic decay: Sollfrank, Koch, and Heinz, Phys. Lett. B 252, 256 (1990)

Simulations of nuclear collisions at the Large Hadron
 Collider

Numerical results

11/19

Initial temperature is higher with lower cutoff momentum; the flow development is mostly unaffected

Hydrodynamic evolution

 $1 \text{ fm}/c \simeq 3.3 \times 10^{-24} \text{ s}$

See e.g. AM, Int. J. Mod. Phys. A 37(11n12), 2230006 (2022) for a review

Sources of direct photons (conventional)

Prompt photons produced at the collision

Turbide, Rapp and Gale, PRC 69, 014903 Heffernan, Hohler, and Rapp, PRC 91, 027902 Holt, Hohler, and Rapp, NPA 945, 1 Berges et. al., PRC 95, 054904 (2017) Tanji and Venugopalan PRD 95, 094009 (2017)

Thermal photons produced from the medium

Photons

See e.g. AM, Int. J. Mod. Phys. A 37(11n12), 2230006 (2022) for a review

Sources of direct photons (this work)

Prompt photons produced at the collision

Turbide, Rapp and Gale, PRC 69, 014903 Heffernan, Hohler, and Rapp, PRC 91, 027902 Holt, Hohler, and Rapp, NPA 945, 1 Berges et. al., PRC 95, 054904 (2017) Tanji and Venugopalan PRD 95, 094009 (2017)

Thermal photons

produced from the medium (low momentum only)

High p_T photons

produced from the nonthermal components

Particle spectra

Numerical results

Thermal photon distribution is reduced above p_c Total distribution is mostly unaffected by the choice of p_c

Elliptic flow

From spatial anisotropy to momentum anisotropy

Pressure gradients drive particles faster in the direction of the minor axis

The momentum distribution of hadrons has anisotropy (elliptic flow v_2)

Direct photons are also anisotropic

Prompt photons: isotropic

 $\begin{array}{c} - \\ & \text{Thermal photons: anisotropic} \\ & \text{High } p_T \text{ photons: isotropic} \end{array} \end{array}$

*High p_{τ} photons are conjectured as thermal photons with no anisotropy in this study

Elliptic flow

Numerical results

Photon v_2 is sensitive to the choice of p_c ; whether it is enhanced or not depends on the high p_T contributions

Summary

- We developed a "red" hydrodynamic model of the QGP
 - Equation of state is constructed only with low momentum components
 - High p_T photon emission is assumed to be non-thermal
 - Initial temperature can be higher
 - Direct photon v₂ can be sensitive to the cutoff momentum p_c

Outlook

Future directions

- Introduction of viscous corrections (including estimation of trapsport coefficients)
- ▶ Event-by-event estimation for quantitative analyses of ellipti€₁flow
- Comparison with the experimental data for understanding the photon puzzle*
 - *The discrepancy between the theoretical estimations and experimental data of direct photon v_2

0.05 HENIX, Phys. Rev. C 94,

Backup slides

Equation of state

Hadron resonance gas (HRG) + parton gas
Particle Data Group: PRD 98, 030001 (2018)

 P_{had} : hadron resonances < 2 GeV with u,d,s components P_{QGP} : u,d,s, and g

Connection of the hadronic and QGP pressures

$$P(T) = P_{had}(T) \qquad (T < T_c)$$

$$P(T) = P_{had}(T_c) + \left[P_{QGP}(T) - P_{had}(T_c)\right] \times \{1 - \exp[-c(T - T_c)]\} \qquad (T \ge T_c)$$
where $c = \frac{P'_{had}(T_c)}{P_{QGP}(T) - P_{had}(T_c)}$ so that $\frac{dP(T_c)}{dT} = \frac{dP_{had}(T_c)}{dT}$

Equation of state

Benefits of the connection method

1. It puts emphasis on HRG, which is more reliable than parton gas accoding to lattice QCD

- 2. Kinetic freezeout is safe below T_c
- 3. The difference from the lattice QCD pressure is wihtin 10% for 0 < T < 1 TeV