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4/31Foundation of equilibrium stat-mech

An isolated macro classical/quantum system 

relaxes towards a steady state at late times.

• Typicality

A great majority of states with the same 

energy are indistinguishable by 

macroscopic observables!

H. Tasaki, J. Stat. Phys. 

163 (2016) and his book

“thermal equilibrium”

= common properties shared by 

the majority of states

 Microcanonical (MC) ensemble works!

• Thermalization

The approach to these typical states

But why?

Fundamental problem since von Neumann’s work (1929)



5/31Experimental verification

Numerical verification
M. Rigol et al., Nature 452 (2008)

1d Bose-Hubbard, 87Rb

S. Trotzky et al., Nat. Phys. 8 (2012)

Comparison with t-DMRG result

[From Hamazaki-san’s slides]
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• Strong ETH:   All in the energy shell are thermal.

Believed to be true for a large class of non-integrable systems

Concept: von Neumann, Deutsch, Srednicki, Tasaki, …

Numerical evidence: D’Alessio et al., Adv. Phys. 65 (2016).

Eigenstate thermalization hypothesis (ETH) 
• Setup

: Hamiltonian, : (normalized) energy eigenstate, 

: macroscopic observable,   : MC ensemble,

Energy shell: 

• Thermal states

A state is said to be thermal if  

• Weak ETH:   Almost all in the energy shell are thermal. 

Proved under certain conditions

Biroli, Kollath & Lauchli, PRL 105 (2010);

Iyoda, Kaneko & Sagawa, PRL 119 (2017)
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1. Integrable systems 

Many conserved charges

Strong ETH      ,   Weak ETH

2. Many-body localized (MBL) systems

Emergent local integrals of motion

Strong ETH      ,   Weak ETH

3. Hilbert-space fragmentation

Hilbert space splits into exp. many sectors

Strong ETH      ,   Weak ETH       &

Exceptions of strong ETH

4.    Quantum many-body scarred systems

Strong ETH      ,   Weak ETH

Non-integrable but have scarred states which 

do not thermalize for an anomalously long time!

Ex.) S=1/2 Heisenberg chain



8/31

A very nice blog article

“Quantum Machine Appears to Defy 

Universe’s Push for Disorder”, 
Marcus Woo, Quanta magazine, March 2019

What are scars?

1-particle wave function in a Bunimovich stadium

E. Heller, PRL 53 (1984)

One-body scars

Recommendation:

15-puzzle and Nagaoka ferromagnetism

Quanta magazine, January 2019.

(From Shibata’s PhD thesis)

「パズドラの数理と物理」
東大理学部ニュース

(2019年7月号)



9/31Experiment on Rydberg atom arrays

• Rydberg blockade 

Bernien et al., Nature 551 (2017)

vdW-type

interaction

Never have adjacent excited states

• Rydberg atoms 

Atoms in which one of the electrons is in an excited 

state with a very high principal quantum number. +
-

+ -

87Rb: el. in 5s  70s

• A surprising finding! 

Exhibit robust oscillations. Other initial 

states thermalize much more rapidly.

Special initial states



10/31PXP model (1)
Turner et al., Nat. Phys. 14, 745 (2018)• Hamiltonian

• Example: 4-site with PBC 

Dimension of Hilbert space: F3+F5 = 7

State graph Hamiltonian

1  2  3  4

Fendley, Sengupta & Sachdev, 

PRB 69 (2004); Lesanovsky & 

Katsura, PRB 86 (2012)
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Revivals of fidelity

• Properties

1. Level statistics 

 Wigner-Dyson, non-integrable

2. Long-time oscillations are observed

3. Energy (E) v.s. entanglement 

entropy (S)  Anomalously low S at high E

• Exact QMBS

Exact eigenstates of HPXP in the form

of matrix product states (MPS)

 Low entanglement states 

at high energy

Lin & Motrunich, PRL 122, 173401 (2019). 

PXP model (2)



12/31Exact QMBS

• Embedding method
Shiraishi & Mori, PRL 119 (2017)

• AKLT models
Moudgalya, Regnault & Bernevig, PRB 98 (2018)

Mark, Lin & Motrunich, PRB 101 (2020)

• Ising and XY-like models
Iadecola & Schecter, PRB 101 (2020)

Chattopadhyay, Pichler, Lukin, Ho & PRB 101 (2020)

• Floquet scars
Driven PXP: Sugiura, Kuwahara, Saito, PRR 3 (2021)

Mizuta, Takasan & Kawakami, PRR 2 (2020)

• Recent reviews
Serbyn, Abanin & Papic, Nat. Phys. 17 (2021)

Moudgalya, Bernevig & Regnault, Rep. Prog. Phys. (2022)

Chandran, Iadecola, Khemani & Moessner, ARCMP 14 (2023)

Frustration-free system



13/31Scars in lattice gauge theories?

• U(1) quantum link model U.-J. Wiese, Ann. Phys. 525, 777 (2013)

Hamiltonian

Constraint: ice rule

• Z2 gauge model (Fradkin, Kogut, Susskind, …)

O. Fukushima & R. Hamazaki, arXiv:2305.04984 (2023)

D. Banerjee & Arnab Sen. PRL 126, 220601 (2021)

Scar states

• Regularized lattice Yang-Mills 

T. Hayata & Y. Hidaka, arXiv:2305.05950 (2023)



14/31
Today’s subject

• Constructing models with exact QMBS

 Using Onsager algebra

 Using integrable boundary states 

 Using (restricted) spectrum generating algebra

 …

• Quantum many-body scars (QMBS) 

 Non-thermal eigenstates of non-integrable

Hamiltonians

 Finite-energy density 

 Entanglement entropy does not obey a volume law

2d Ising model:

Phys. Rev. 65 (1944)
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1. Introduction and Motivation

2. Onsager scars

• Strategy

• Perturbed S=1/2 XY chain

• Higher-spin models

3. Other scarred models

4. Summary



16/31Exactly solvable models
 (Crude) Classification

Not exclusive!

Heisenberg Hamiltonian

Eigenstates take the 

Bethe-ansatz form (1931)

Spin op. on j-th site:

• Integrable systems
Free fermions/bosons, Bethe ansatz

Many conserved charges

• Frustration-free systems
Ground state (g.s.) minimizes each local Hamiltonian

Explicit g.s., but hard to obtain excited states



17/31Strategy

1. Starting point:

Integrable model with conserved charges

They commute with the Hamiltonian  

2. Take a subalgebra

3. Find a reference eigenstate

ψ0: simple state, e.g., product state or MPS

4. Find a tower of eigenstates generated by acting 

with the subalgebra on the reference state:

They have the same energy as ψ0

5. Add perturbations that break the integrability of  

but do not hurt the tower of states

 QMBS in non-integrable H



18/31Example: S=1/2 XY chain

Model 1               2 L
L: even

Periodic chain

• Hamiltonian

Can be mapped to free fermions via Jordan-Wigner

Lieb-Schultz-Mattis (1961), Katsura (1962)

• Conserved charges

“bi-magnon” operator:

An element of Onsager’s algebra! Infinitely many such.

• Reference eigenstate

All down state: 

Total Sz: 
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Bi-magnon state with momentum  

Magnon eigenstates

 ``Motion” of flipped spin 

1 2 N

Flipped spin hops to 

the neighboring sites.

not an eigenstate of 

is an exact zero-energy state 

Bloch state 

is an exact eigenstate of  



20/31Desired perturbations
• Tower of exact eigenstates (with fixed total Sz)

• “Coherent state” 

MPS with bond dim. 2 

 never appear                 

in any three consecutive sites

 Identify Hermitian operators 

that annihilate 

c’s can be 

random!

• Possible perturbations



21/31Properties of the perturbed model
 Level-spacing statistics

• Perturbed Hamiltonian

• System size: L=16

• Only diagonal perturbation

• Zero magnetization sector

L=14

H is non-integrable!Entanglement diagnosis

• Entanglement entropy (EE)

Volume law  Thermal 

Sub-volume law  non-thermal 

• QMBS states

Rigorous result: 

EE of QMBS ≦ O (ln L)

Half-chain EE

Pal, Huse, PRB 82 (2010)

Mori et al., JPB 51 (2018)
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• Hamiltonian

• Initial state = coherent state

• Time evolution 

Dynamics

Numerical results

• Fidelity • Entanglement

Revival at



23/31What about S >1/2 ?
Self-dual U(1)-invariant clock model

Vernier, O’Brien & Fendley, J. Stat. Mech. (2019)

• Matrices

• Hamiltonian

H2 boils down to (twisted) XY,  H3  S=1 Fateev-Zamolodchikov

• U(1) symmetry

• Self-duality (in the         rep.)

• Onsager algebra!

Truly interacting for n>2!



24/31S=1 (n=3) model
• Integrable Hamiltonian

• Coherent state

Matrix product state (MPS) with bond 

dimension 3. Desired perturbations 

can be identified from this MPS.

• Half-chain entanglement • Fidelity
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1. Introduction and Motivation

2. Onsager scars

3. Other scarred models

• Boundary scars & scalar chirality

• Dzyaloshinskii-Moriya int.+Zeeman

4. Summary



26/31Integrable boundary states

• Integrable Hamiltonian:

• Boost operator:

• Conserved charges:

is even / odd under parity      :

 Example: S =1/2 Heisenberg chain

• Integrable boundary states:

(1d nearest neighbor int.)

Lattice version of boundary states in integrable QFT: 
Ghoshal & Zamolodchikov, IJMP A9, 3841 (1994)

Piroli, Pozsgay & Vernier, NPB 925 (2017)

Scalar chirality



27/31Boundary scars
 If         is an eigenstate of a non-integrable Hamiltonian       ,

then it is an eigenstate of 

 Example of a scarred model

• H0 : Majumdar-Ghosh model [JMP 10 (1969)]

Dimer g.s. are annihilated by CSC!

• Hamiltonian

L = 18, t = 8

Sz=0

 Non-integrable (Wigner-Dyson)

 Energy v.s. EE plot

 Dimer g.s. is a scar!



28/31Toward realization of spin models

Experimental setup

• 1d array of Rb atoms

• Effective spin states

• Effective Hamiltonian

 S=1/2 XXZ chain in a rotating magnetic field 

Hamiltonian in spin-rotating frame

• Tuning q, δ, etc.  Model with only Dzyaloshinskii-Moriya int. 

and field in the z-direction [Kodama, Kato & Tanaka, PRB 107 (2023)] 

DH model



29/31Toward realization of spin models

Experimental setup

• 1d array of Rb atoms

• Effective spin states

• Effective Hamiltonian

 S=1/2 XXZ chain in a rotating magnetic field 

Hamiltonian in spin-rotating frame

• Tuning q, δ, etc.  Model with only Dzyaloshinskii-Moriya int. 

and field in the z-direction [Kodama, Kato & Tanaka, PRB 107 (2023)] 

DH model



30/31QMBS states in DH model

• Hamiltonian

• Raising operator                                   

• They satisfy a restricted spectrum generating algebra (SGA)

See e.g., Moudgalya et al.,

PRB 102, 085140 (2020). 

• Exact eigenstates

Similar to       in Schecter & 

Iadecola, PRL 123 (2019). 

 Non-integrable (Wigner-Dyson)

 Energy v.s. EE plot, fidelity

 They are scars!

PBC or 

special OBC

OBC, L=18, H=0.1D, Soliton num. = 5



31/31Summary

• Using Onsager algebra

Perturbed S=1/2 XY chain, higher-spin models

• Using integrable boundary states

Majumdar-Ghosh + scalar chirality

• Using restricted SGA

Dzyaloshinskii-Moriya + Zeeman

Proposal for an experiment

Constructing models with QMBS

Other models

• Correlated hopping model: Tamura & HK, PRB 106 (2022)

• Generalization of eta-pairing: Yoshida & HK, PRB 105 (2022)

• S=1 AKLT + SU(3) scalar chirality

• Perturbed S=1 scalar chirality in 1d and 2d
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Backup slides



33/31Onsager algebra

• Hamiltonian Unitarily equivalent to

• Commuting operators

• Dolan-Grady relation

Any polynomial in           commutes with H2

• Defining relations of algebra

All        commute with H2

(Quantum) Ising!

Phys. Rev. 65 (1944)

Allows for scarred models with 

longer-range interactions!



34/31Rydberg atom system (backup 1)



35/31S=1 AKLT + SU(3) scalar chirality

• Hamiltonian

• Level statistics • Entanglement entropy

The g.s. of               is an 

integrable boundary state



36/31Perturbed S=1 scalar chirality (1)

• S=1 scalar chirality

Exponentially many E=0 states

• Model 1

Exact eigenstates

• Entanglement entropy & fidelity
L=10, h=1; Sz = 0, Spin-flip sym. sector; 



37/31Perturbed S=1 scalar chirality (2)

• Model 2

Exact eigenstates

• Entanglement entropy & fidelity

L=10, h=1; Sz = 0 sector; 

• Can also construct 2D models
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Rydberg atom system (backup 2)
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Rydberg atom system (backup 3)
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Rydberg atom system (backup 4)

• Level statistics (weak to moderate field)


