熱場の量子論とその応用@KEK, 2023/8/29

Quantum many-body scars 量子多体傷跡状態と 関連する話題

桂 法称 (東京大学)

Institute for Physics of Intelligence

Trans-Scale Quantum Science Institute

Acknowledgments

- Onsager's scars
 - N. Shibata, N. Yoshioka, HK, PRL 124, 180604 (2020)
- Fermionic models
 - H. Yoshida & HK, PRB 105, 024520 (2022)
 - K. Tamura & HK, PRB 106, 144306 (2022)
- Integrable boundary states, scalar chirality, …
 - K. Sanada, Y. Miao & HK, arXiv:2304.13624.
- Dzyaloshinskii-Moriya + Zeeman model
 - M. Kunimi, T. Tomita, HK & Y. Kato, arXiv:2306.05591

Outline

- 1. Introduction and Motivation
- Eigenstate thermalization hypothesis (ETH)
- Violation of ETH
- Rydberg-atom array & PXP model
- Quantum many-body scars (QMBS)
- 2. Onsager scars
- 3. Other scarred models
- 4. Summary

Foundation of equilibrium stat-mech

An isolated macro classical/quantum system relaxes towards a steady state at late times.

But why?

Fundamental problem since von Neumann's work (1929)

Typicality

A great majority of states with the same energy are indistinguishable by macroscopic observables!

- "thermal equilibrium"
- = common properties shared by the majority of states
- \rightarrow Microcanonical (MC) ensemble works!
- Thermalization
 The approach to these typical states

4/31

Experimental verification

S. Trotzky et al., Nat. Phys. 8 (2012)

1d Bose-Hubbard, ⁸⁷Rb

Comparison with t-DMRG result

Eigenstate thermalization hypothesis (ETH) ^{6/31}

Setup

H: Hamiltonian, $|E_n\rangle$: (normalized) energy eigenstate, *O*: macroscopic observable, ρ_{mc} : MC ensemble,

Energy shell: $\operatorname{span}\{|E_n\rangle: H|E_n\rangle = E_n|E_n\rangle, E_n \in [E - \Delta E, E)\}$

• Thermal states

A state $|E_n\rangle$ is said to be thermal if $\langle E_n|O|E_n\rangle \simeq \text{Tr}[\rho_{\text{mc}}O]$.

• Strong ETH: All $|E_n\rangle$ in the energy shell are thermal.

Believed to be true for a large class of non-integrable systems Concept: von Neumann, Deutsch, Srednicki, Tasaki, ... Numerical evidence: D'Alessio et al., Adv. Phys. **65** (2016).

• Weak ETH: Almost all $|E_n\rangle$ in the energy shell are thermal.

Proved under certain conditions Biroli, Kollath & Lauchli, PRL **105** (2010); Iyoda, Kaneko & Sagawa, PRL **119** (2017)

Exceptions of strong ETH

- Integrable systems
 Many conserved charges
 Strong ETH X, Weak ETH V
- Many-body localized (MBL) systems Emergent local integrals of motion Strong ETH X, Weak ETH X

 Quantum many-body scarred systems Strong ETH X, Weak ETH V Non-integrable but have scarred states which do not thermalize for an anomalously long time!

Ex.) S=1/2 Heisenberg chain $H_{\text{Hei}} = \sum_{j=1}^{L} S_j \cdot S_{j+1}$ $H_{\text{MBL}} = H_{\text{Hei}} + \sum_{j=1}^{L} h_j S_j^z$

What are scars?

■ A very nice blog article

"Quantum Machine Appears to Defy Universe's Push for Disorder",

Marcus Woo, Quanta magazine, March 2019

(2019年7月号)

Recommendation:

15-puzzle and Nagaoka ferromagnetism

Quanta magazine, January 2019. 「パズドラの数理と物理」 東大理学部ニュース

One-body scars

1-particle wave function in a Bunimovich stadium

E. Heller, PRL 53 (1984) (a) n = 199

(From Shibata's PhD thesis)

Experiment on Rydberg atom arrays

Bernien *et al.*, Nature **551** (2017)

• Rydberg atoms

Atoms in which one of the electrons is in an excited state with a very high principal quantum number.

Rydberg blockade

• A surprising finding! Special initial states

$$|\mathbf{Z}_2\rangle = |\bullet \circ \bullet \circ \cdots \rangle, \ |\mathbf{Z}_2'\rangle = |\circ \bullet \circ \bullet \cdots$$

Exhibit robust oscillations. Other initial states thermalize much more rapidly.

9/31

00 nm - 1 µm

⁸⁷Rb; el. in 5s \rightarrow 70s

PXP model (1)

Hamiltonian

Turner *et al.*, Nat. Phys. **14**, 745 (2018)

j

$$H_{\rm PXP} = \sum_{j} P_{j-1} X_j P_{j+1},$$

$$P = |\circ\rangle\langle\circ|, \ X = |\circ\rangle\langle\bullet| + |\bullet\rangle\langle\circ|$$

Fendley, Sengupta & Sachdev, PRB 69 (2004); Lesanovsky & Katsura, PRB 86 (2012)

• Example: 4-site with PBC

Dimension of Hilbert space: $F_3 + F_5 = 7$

Hamiltonian

(0	1	1	1	1	0	0 `
	1	0	0	0	0	1	0
	1	0	0	0	0	0	1
	1	0	0	0	0	1	0
	1	0	0	0	0	0	1
	0	1	0	1	0	0	0
	0	0	1	0	1	0	0 /

PXP model (2)

- Properties
 - 1. Level statistics
 - \rightarrow Wigner-Dyson, non-integrable
 - 2. Long-time oscillations are observed
 - 3. Energy (*E*) v.s. entanglement $O_0 = O_0^{0.0} + O_0^{0.0}$ entropy (*S*) \rightarrow Anomalously low *S* at high *E*

• Exact QMBS

Lin & Motrunich, PRL 122, 173401 (2019).

Exact eigenstates of H_{PXP} in the form of matrix product states (MPS) \rightarrow Low entanglement states at high energy

Exact QMBS

- Embedding method Shiraishi & Mori, PRL 119 (2017)
- $H = \sum_{j} A_{j}^{\dagger} A_{j}, \quad A_{j} |\psi_{0}\rangle = 0 \; \forall j$ $\longrightarrow H_{\text{new}} = \sum_{j} A_{j}^{\dagger} C_{j} A_{j}$ AKLT models Moudgalya, Regnault & Bernevig, PRB 98 (2018) Mark, Lin & Motrunich, PRB **101** (2020)
- Ising and XY-like models ladecola & Schecter, PRB 101 (2020) Chattopadhyay, Pichler, Lukin, Ho & PRB **101** (2020)
- Floquet scars Driven PXP: Sugiura, Kuwahara, Saito, PRR 3 (2021) Mizuta, Takasan & Kawakami, PRR 2 (2020)
- Recent reviews

Serbyn, Abanin & Papic, Nat. Phys. 17 (2021) Moudgalya, Bernevig & Regnault, Rep. Prog. Phys. (2022) Chandran, Iadecola, Khemani & Moessner, ARCMP 14 (2023)

Frustration-free system

Scars in lattice gauge theories?

• U(1) quantum link model U.-J. Wiese, Ann. Phys. **525**, 777 (2013) $U|\rightarrow\rangle = U^{\dagger}|\leftrightarrow\rangle = 0, \quad U^{\dagger}|\rightarrow\rangle = |\leftrightarrow\rangle, \quad U|\leftrightarrow\rangle = |\rightarrow\rangle$

Constraint: ice rule

Hamiltonian $H = \mathcal{O}_{kin} + \lambda \mathcal{O}_{pot},$ $\mathcal{O}_{kin} = -\sum_{\Box} (U_{\Box} + U_{\Box}^{\dagger}), \mathcal{O}_{pot} = \sum_{\Box} (U_{\Box} + U_{\Box}^{\dagger})^2$

Scar states

- D. Banerjee & Arnab Sen. PRL 126, 220601 (2021)
- Z2 gauge model (Fradkin, Kogut, Susskind, ...)
 O. Fukushima & R. Hamazaki, arXiv:2305.04984 (2023)
- Regularized lattice Yang-Mills

T. Hayata & Y. Hidaka, arXiv:2305.05950 (2023)

Today's subject

- Quantum many-body scars (QMBS)
 - ✓ Non-thermal eigenstates of non-integrable Hamiltonians
 - ✓ Finite-energy density
 - ✓ Entanglement entropy does not obey a volume law
- Constructing models with exact QMBS
 - ✓ Using Onsager algebra

- 2d Ising model: Phys. Rev. **65** (1944)
- ✓ Using integrable boundary states
- ✓ Using (restricted) spectrum generating algebra

Outline

- 1. Introduction and Motivation
- 2. Onsager scars
- Strategy
- Perturbed S=1/2 XY chain
- Higher-spin models

- 3. Other scarred models
- 4. Summary

Exactly solvable models

- (Crude) Classification
 - Integrable systems
 Free fermions/bosons, Bethe ansatz
 Many conserved charges

Not exclusive!

 Frustration-free systems Ground state (g.s.) minimizes each local Hamiltonian Explicit g.s., but hard to obtain excited states

Heisenberg Hamiltonian

$$H = -\sum_{j=1}^{L} (S_j^x S_{j+1}^x + S_j^y S_{j+1}^y + S_j^z S_{j+1}^z)$$

Eigenstates take the Bethe-ansatz form (1931)

Strategy

- 1. Starting point: Integrable model with conserved charges $Q_1, Q_2, ...$ They commute with the Hamiltonian H_{int}
- 2. Take a subalgebra $\{Q_1, Q_2, ...\}$
- 3. Find a reference eigenstate $H_{int}|\psi_0\rangle = E_0|\psi_0\rangle$ ψ_0 : simple state, e.g., product state or MPS
- 4. Find a tower of eigenstates generated by acting with the subalgebra on the reference state:

 $(Q_1)^m (Q_2)^n \cdots |\psi_0\rangle \leftarrow \mathsf{QMBS}$ in non-integrable H

They have the same energy as ψ_0

5. Add perturbations that break the integrability of H_{int} but do not hurt the tower of states

 $H = H_{\text{int}} + H_{\text{pert}}, \quad \text{e.g.}, H_{\text{pert}} (Q_1)^m (Q_2)^n \cdots |\psi_0\rangle = 0$

Example: S=1/2 XY chain

• Hamiltonian

$$H_{\text{int}} = \sum_{j=1}^{L} (S_j^+ S_{j+1}^- + S_j^- S_{j+1}^+) \qquad \qquad S_j^{\pm} := \frac{S_j^x \pm \mathrm{i} S_j^y}{2}$$

Can be mapped to free fermions via Jordan-Wigner Lieb-Schultz-Mattis (1961), Katsura (1962)

• Conserved charges

Total S^z:
$$Q = \sum_{j=1}^{L} S_{j}^{z}$$
 $[H_{int}, Q^{\pm}] = 0$
"bi-magnon" operator: $Q^{\pm} = \sum_{j=1}^{L} (-1)^{j+1} S_{j}^{\pm} S_{j+1}^{\pm}$

An element of Onsager's algebra! Infinitely many such.

• Reference eigenstate All down state: $|\Downarrow\rangle = |\downarrow\rangle \otimes |\downarrow\rangle \otimes \cdots \otimes |\downarrow\rangle$, $H_{int}|\Downarrow\rangle = 0$

Magnon eigenstates Motion" of flipped spin $+ + + + + + + + |j\rangle = S_j^+ |\psi\rangle$ *not* an eigenstate of $H_{\rm int}$ $(S_{i}^{+}S_{i+1}^{-} + S_{i}^{-}S_{i+1}^{+})|j\rangle = |j+1\rangle$ Flipped spin hops to the neighboring sites. $E(k) = 2\cos k$ Bloch state $|\psi_k\rangle = \frac{1}{\sqrt{N}} \sum_{i} e^{ikj} |j\rangle$ $-\pi/a$ 0 is an exact eigenstate of $H_{\rm int}$ **Bi-magnon state with momentum** π

 $+ + + + + + + + |j, j+1\rangle = S_j^+ S_{j+1}^+ |\Downarrow\rangle$ $Q^+|\Downarrow\rangle = \sum (-1)^{j+1}|j,j+1\rangle$ is an exact zero-energy state j=1

 π/a

Desired perturbations

- Tower of exact eigenstates (with fixed total S^z) $|\Downarrow\rangle, Q^+|\Downarrow\rangle, ..., (Q^+)^k|\Downarrow\rangle, ..., (Q^+)^{L/2}|\Downarrow\rangle$ ($(Q^+)^{L/2+1} = 0$)
- "Coherent state" $|\psi(\beta)\rangle = \exp(\beta^2 Q^+) |\psi\rangle = \sum_{k=0}^{L/2} \frac{\beta^{2k}}{k!} (Q^+)^k |\psi\rangle$
 - $|\psi(\beta)\rangle = \operatorname{Tr}\left[\begin{pmatrix}|\downarrow\rangle_{1} & \beta|\uparrow\rangle_{1}\\\beta|\uparrow\rangle_{1} & 0\end{pmatrix}\begin{pmatrix}|\downarrow\rangle_{2} & -\beta|\uparrow\rangle_{2}\\\beta|\uparrow\rangle_{2} & 0\end{pmatrix}\begin{pmatrix}|\downarrow\rangle_{3} & -\beta|\uparrow\rangle_{3}\\\beta|\uparrow\rangle_{3} & 0\end{pmatrix}\cdots\right]$
- Possible perturbations

MPS with bond dim. 2

 $\begin{pmatrix} |\downarrow\downarrow\downarrow\rangle - \beta^2 (|\downarrow\uparrow\uparrow\rangle - |\uparrow\uparrow\downarrow\rangle) & \beta |\downarrow\downarrow\uparrow\rangle + \beta^3 |\uparrow\uparrow\uparrow\rangle \\ \beta |\uparrow\downarrow\downarrow\rangle - \beta^3 |\uparrow\uparrow\uparrow\rangle & \beta^2 |\uparrow\downarrow\uparrow\rangle \end{pmatrix}_{1,2,3}$

- ✓ $|\downarrow\uparrow\downarrow\rangle$ and $(|\downarrow\uparrow\uparrow\rangle + |\uparrow\uparrow\downarrow\rangle)/\sqrt{2}$ never appear in any three consecutive sites
- ✓ Identify Hermitian operators that annihilate $|\psi(\beta)\rangle$

 $H_{\rm pert}|\psi(\beta)\rangle=0$

$$\begin{split} H_{\text{pert}} &= \sum_{j=1}^{L} (c_{j}^{(1)} |\downarrow\uparrow\downarrow\rangle \langle\downarrow\uparrow\downarrow| & \begin{array}{c} \textbf{c's can be} \\ \textbf{random!} \\ &+ \frac{c_{j}^{(2)}}{2} (|\downarrow\uparrow\uparrow\rangle + |\uparrow\uparrow\downarrow\rangle) (\langle\downarrow\uparrow\uparrow| + \langle\uparrow\uparrow\downarrow|) \\ &+ c_{j}^{(3)} [|\downarrow\uparrow\downarrow\rangle (\langle\downarrow\uparrow\uparrow| + \langle\uparrow\uparrow\downarrow|) + \text{h.c.}]) \end{split}$$

Properties of the perturbed model

- Level-spacing statistics
 - Perturbed Hamiltonian $H = H_{int} + H_{pert} + hQ,$
 - System size: *L*=16
 - Only diagonal perturbation
 - Zero magnetization sector
- Entanglement diagnosis
 - Entanglement entropy (EE)
 Volume law → Thermal

Sub-volume law \rightarrow non-thermal ³ Mori *et al.*, JPB **51** (2018) S_{A^2}

• QMBS states $(Q^+)^k | \Downarrow \rangle$ Rigorous result: EE of QMBS $\leq O(\ln L)$

21/31

Dynamics

- Hamiltonian $H = H_{int} + H_{pert} + hQ$,
- Initial state = coherent state $|\psi(\beta)\rangle = \exp(\beta^2 Q^+) |\Downarrow\rangle$
- **Revival** at Time evolution $|\psi_t(\beta)\rangle = \exp(-iHt)|\psi(\beta)\rangle \propto |\psi(\beta e^{-iht})\rangle \qquad t = t_k = \frac{\pi k}{h}, \quad k \in \mathbb{N}$
- Numerical results $L = 10, h = 1.0, c_i^{(i)} \in [-1, 1] \text{ (random)}$
- Fidelity

What about S >1/2 ?

Self-dual U(1)-invariant clock model

Vernier, O'Brien & Fendley, J. Stat. Mech. (2019)

• Matrices
$$\omega = \exp(2\pi i/n)$$

 $\tau = \begin{pmatrix} 1 & & \\ & \omega & \\ & & \ddots & \\ & & & \omega^{n-1} \end{pmatrix}, \quad S^+ = \begin{pmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & 0 & 1 \\ & & & & 0 \end{pmatrix}, \quad S^- = (S^+)^{\dagger}$

• Hamiltonian Truly interacting for n>2!

$$H_n = i \sum_{j=1}^{n} \sum_{a=0}^{n} \frac{1}{1 - \omega^{-a}} [(2a - n)\tau_j^a + n(S_j^+ S_{j+1}^-)^{n-a} - n(S_j^- S_{j+1}^+)^a]$$

 H_2 boils down to (twisted) XY, $H_3 \rightarrow S=1$ Fateev-Zamolodchikov

- U(1) symmetry $[H_n, Q] = 0, \quad Q = \sum_{j=1}^{2} S_j^z$
- Self-duality (in the $\sigma \tau \operatorname{rep.}_{L}$)

• Onsager algebra!
$$Q^+ = \sum_{j=1}^{n} \sum_{a=1}^{n-1} \frac{1}{1-\omega^{-a}} (S_j^+)^a (S_{j+1}^+)^{n-a}$$

 $[H_n, Q^+] = 0$

S=1 (*n*=3) model

• Integrable Hamiltonian

$$H_{\text{int}} = \sqrt{3} \sum_{j=1}^{L} \left[S_j^+ S_{j+1}^- + S_j^- S_{j+1}^+ - (S_j^+ S_{j+1}^-)^2 - (S_j^- S_{j+1}^+)^2 - (S_j^z)^2 + \frac{2}{3} \right]$$

Coherent state

$$Q^{+} = \frac{2}{\sqrt{3}} \sum_{j=1}^{L} S_{j}^{+} (S_{j}^{+} - S_{j+1}^{+}) S_{j+1}^{+}, \quad |\psi(\beta)\rangle = \exp(\beta^{2} Q^{+})|-, -, \cdots, -\rangle$$

Matrix product state (MPS) with bond dimension 3. Desired perturbations can be identified from this MPS.

$$H = H_{\rm int} + H_{\rm pert} + hQ,$$

24/31

• Half-chain entanglement

 Fidelity 1.0 $|\psi(0.5)\rangle$ 0.8 $\langle \phi(t) | \phi(0) \rangle |$ $- |\psi(1.0)\rangle$ 0.6 $-|\psi(2.0)\rangle$ 0.4 $- |012012\rangle$ 0.2— random 0.0 2 6 8 0

Outline

- 1. Introduction and Motivation
- 2. Onsager scars
- 3. Other scarred models
- Boundary scars & scalar chirality
- Dzyaloshinskii-Moriya int.+Zeeman

4. Summary

Integrable boundary states

- Integrable Hamiltonian: $H_{int} = \sum H_j$ (1d nearest neighbor int.)
- Boost operator: $B = \sum j H_j$
- Conserved charges: $Q_{n+1} = [B, Q_n], \quad Q_2 \propto H_{\text{int}}$

 Q_{2k}/Q_{2k+1} is even / odd under parity \mathcal{I} : $\mathcal{I}|\sigma_1, \sigma_2, \cdots, \sigma_{L-1}, \sigma_L \rangle = |\sigma_L, \sigma_{L-1}, \cdots, \sigma_2, \sigma_1 \rangle$

- $\blacktriangleright \text{ Example: } S = 1/2 \text{ Heisenberg chain} \qquad \text{Scalar chirality} \\ H_{\text{int}} = \sum_{j=1}^{L} S_j \cdot S_{j+1} \implies Q_3 \propto C_{\text{SC}} = \sum_{j=1}^{L} S_j \cdot (S_{j+1} \times S_{j+2})$
- Integrable boundary states: Piroli, Pozsgay & Vernier, NPB 925 (2017)

$$|\Psi_0\rangle$$
 such that $Q_{2k+1}|\Psi_0\rangle = 0$ for all $k = 1, 2, 3, ...$

Lattice version of boundary states in integrable QFT: Ghoshal & Zamolodchikov, IJMP **A9**, 3841 (1994)

Boundary scars

If $|\Psi_0\rangle$ is an eigenstate of a non-integrable Hamiltonian H_0 , then it is an eigenstate of $H_0 + \sum_{k=1}^{\infty} t_k Q_{2k+1}$ $(t_k \in \mathbb{R})$

- Example of a scarred model
 - *H*₀ : Majumdar-Ghosh model [JMP **10** (1969)]

$$H_{\rm MG} = \sum_{j=1}^{L} \left[(S_j + S_{j+1} + S_{j+2})^2 - \frac{3}{4} \right]$$

Dimer g.s. are annihilated by $C_{\rm SC}$

Hamiltonian

 $H(t) = H_{\rm MG} + tC_{\rm SC}$

- ✓ Non-integrable (Wigner-Dyson)
- ✓ Energy v.s. EE plot
- ✓ Dimer g.s. is a scar!

j+1

j+2

Toward realization of spin models

- Experimental setup
 - 1d array of Rb atoms
 - Effective spin states k $|\downarrow\rangle \leftrightarrow |n_1 S_{1/2}\rangle, |\uparrow\rangle \leftrightarrow |n_2 S_{1/2}\rangle$
 - Effective Hamiltonian $\rightarrow S=1/2 XXZ$ chain in a rotating magnetic field $-\Omega_{\text{eff}}[\cos(qj)S_{j}^{x} + \sin(qj)S_{j}^{y}] - \tilde{\Delta}S_{j}^{z}, \quad q = k_{1}d\cos\theta$
- Hamiltonian in spin-rotating frame

$$H_{\text{eff}} = J \cos q \sum_{j} (S_{j}^{z} S_{j+1}^{z} + S_{j}^{x} S_{j+1}^{x}) + J\delta \sum_{j} S_{j}^{y} S_{j+1}^{y} - \tilde{\Delta} \sum_{j} S_{j}^{y}$$
$$- J \sin q \sum_{j} (S_{j}^{z} S_{j+1}^{x} - S_{j}^{x} S_{j+1}^{z}) - \Omega_{\text{eff}} \sum_{j} S_{j}^{z} \quad \text{DH model}$$

• Tuning q, δ , etc. \rightarrow Model with only Dzyaloshinskii-Moriya int. and field in the *z*-direction [Kodama, Kato & Tanaka, PRB **107** (2023)]

28/31

Toward realization of spin models

- Experimental setup
 - 1d array of Rb atoms
 - Effective spin states k_1 $|\downarrow\rangle \leftrightarrow |n_1 S_{1/2}\rangle, |\uparrow\rangle \leftrightarrow |n_2 S_{1/2}\rangle$

29/31

• Effective Hamiltonian $\Rightarrow S=1/2 \text{ XXZ chain in a rotating magnetic field}$ $-\Omega_{\text{eff}}[\cos(qj)S_j^x + \sin(qj)S_j^y] - \tilde{\Delta}S_j^z, \quad q = k_1 d \cos \theta$ ■ Hamiltonian in spin-rotating frame $H_{\text{eff}} = J \cos q \sum_j (S_j^z S_{j+1}^z + S_j^x S_{j+1}^x) + J\delta \sum_j S_j^y S_{j+1}^y - \tilde{\Delta} \sum_j S_j^y$

$$-J\sin q \sum_{j} (S_j^z S_{j+1}^x - S_j^x S_{j+1}^z) - \Omega_{\text{eff}} \sum_{j} S_j^z \quad \text{DH model}$$

• Tuning q, δ , etc. \rightarrow Model with only Dzyaloshinskii-Moriya int. and field in the *z*-direction [Kodama, Kato & Tanaka, PRB **107** (2023)]

QMBS states in DH model

- Hamiltonian $H_{DH} = D \sum_{j} (S_j^z S_{j+1}^x S_j^x S_{j+1}^z) H \sum_{j} S_j^z$ PBC or special OBC
- Raising operator $Q^{\dagger} = \sum_{j} P_{j-1} S_{j}^{+} P_{j+1}$ Similar to Q^{\dagger} in Schecter & ladecola, PRL **123** (2019).
- They satisfy a restricted spectrum generating algebra (SGA)

 $H_{\rm DH} | \Downarrow \rangle = E_0 | \Downarrow \rangle \quad (|\Downarrow \rangle = |\downarrow \cdots \downarrow \rangle)$ $[H_{\rm DH}, Q^{\dagger}] | \Downarrow \rangle = -HQ^{\dagger} | \Downarrow \rangle$ $[[H_{\rm DH}, Q^{\dagger}], Q^{\dagger}] = 0$

- Exact eigenstates $|S_n\rangle = (Q^{\dagger})^n |\Downarrow\rangle$ $H_{\rm DH}|S_n\rangle = (E_0 - nH)|S_n\rangle$
 - ✓ Non-integrable (Wigner-Dyson)
 - ✓ Energy v.s. EE plot, fidelity
 - ✓ They are scars!

See e.g., Moudgalya *et al*., PRB **102**, 085140 (2020).

30/31

OBC, *L*=18, *H*=0.1*D*, Soliton num. = 5

Summary

Constructing models with QMBS

- Using Onsager algebra
 Perturbed S=1/2 XY chain, higher-spin models
- Using integrable boundary states Majumdar-Ghosh + scalar chirality
- Using restricted SGA
 Dzyaloshinskii-Moriya + Zeeman
 Proposal for an experiment

- Correlated hopping model: Tamura & HK, PRB 106 (2022)
- Generalization of eta-pairing: Yoshida & HK, PRB 105 (2022)
- S=1 AKLT + SU(3) scalar chirality
- Perturbed S=1 scalar chirality in 1d and 2d

32/31

Backup slides

Onsager algebra

- Hamiltonian $H_2 = i \sum_{j=1} (S_j^+ S_{j+1}^- S_j^- S_{j+1}^+)$ Unitarily equivalent to H_{int}
- Commuting operators

$$Q = \sum_{j=1}^{L} S_{j}^{z}, \quad \hat{Q} = 2 \sum_{j=1}^{L} S_{j}^{x} S_{j+1}^{x}$$

(Quantum) Ising! $H_{\rm QI} = Q + \lambda \hat{Q}$ Phys. Rev. 65 (1944)

 $[H_2, Q] = [H_2, \hat{Q}] = 0$ Any polynomial in Q, \hat{Q} commutes with H_2

- Dolan-Grady relation $[Q, [Q, [Q, \hat{Q}]]] = 4[Q, \hat{Q}]$ $[\hat{Q}, [\hat{Q}, [\hat{Q}, Q]]] = 4[\hat{Q}, Q]$
- Defining relations of algebra

$$\begin{split} & [Q_l^r, Q_m^r] = 0 \quad (r = 0, \pm) \\ & [Q_l^-, Q_m^+] = Q_{m+l}^0 - Q_{m-l}^0 \\ & [Q_l^\pm, Q_m^0] = \mp 2(Q_{m+l}^\pm - Q_{m-l}^\pm) \end{split}$$

All Q_m^r commute with H_2

$$Q = Q_0^0/2, \quad \hat{Q} = (Q_1^0 + Q_1^+ + Q_1^-)/2$$
$$Q_1^0 \propto H_{\text{int}}, \quad Q_1^{\pm} \propto \sum_{j=1}^L S_j^{\pm} S_{j+1}^{\pm}$$

$$Q_m^+ \propto \sum_{j=1}^L S_j^+ S_{j+1}^z \cdots S_{j+m-1}^z S_{j+m}^+$$

33/31

Allows for scarred models with longer-range interactions!

Rydberg atom system (backup 1)

FIG. 1: (a) Schematic of the experimental setup for realization of the DMI. The filled black circles represent the position of the Rydberg atoms. $e_{x,y,z}$ is the unit vector in each direction. The magnetic field is applied along the z axis. (b) Level diagram of ⁸⁷Rb atom. Using the two-photon Raman scheme, we obtain an effective two-level system consisting of $|\uparrow\rangle$ and $|\downarrow\rangle$.

34/31

S=1 AKLT + SU(3) scalar chirality

- Hamiltonian $H(t) = H_{AKLT} + tH_3$ $H_{AKLT} = \sum_{j=1}^{L} \left[S_j \cdot S_{j+1} + \frac{1}{3} (S_j \cdot S_{j+1})^2 + \frac{2}{3} \right]$ $H_3 = \sum_{j=1}^{L} \sum_{a,b,c=1}^{8} f_{abc} \lambda_j^a \lambda_{j+1}^b \lambda_{j+2}^c$ $H_3 = V_{AKLT} = \sum_{j=1}^{R} \int_{abc}^{8} \lambda_j^a \lambda_{j+1}^b \lambda_{j+2}^c$ $H_3 = V_{VBS} = 0$
- Level statistics

Entanglement entropy

35/31

Perturbed S=1 scalar chirality (1)

• S=1 scalar chirality $C_{SC} = \sum_{j=1}^{L} S_j \cdot (S_{j+1} \times S_{j+2})$

Exponentially many *E*=0 states $\mathcal{Z}_L \ge \mathcal{N}_L = 3^{\lfloor \frac{L}{2} \rfloor + 1}$

• Model 1 $H_1(h, \{D_j\}_j) = C_{SC} + h \sum_{j=1}^L S_j^z + \sum_{i=1}^L D_j (S_j^z)^2$

Exact eigenstates $|\bar{B}_n\rangle = (\mathcal{Q}_0^-)^n |\Uparrow\rangle, \quad \mathcal{Q}_p^- = \sum_{i=1}^L e^{ipj} (S_j^-)^2$

36/31

• Entanglement entropy & fidelity L=10, h=1; Sz = 0, Spin-flip sym. sector; $D_i \in [-5, 5]$

Perturbed S=1 scalar chirality (2)

• Model 2 $H_2(h, \{D_j\}_j) = C_{SC} + h \sum_{j=1}^L S_j^z + \sum_{j=1}^L D_j(-1)^{S_j^z + S_{j+1}^z} P_{j,j+1}$

Exact eigenstates $|\bar{A}_n\rangle = (\mathcal{O}_{\pi}^-)^n |\Uparrow\rangle, \quad \mathcal{O}_p^- = \sum_{i=1}^{L} e^{ipj} S_j^-$

Entanglement entropy & fidelity

Can also construct 2D models

37/31

Rydberg atom system (backup 2)

FIG. 3: (a) Half-chain von Neumann EE as a function of the eigenenergy of Hamiltonian (9) for M = 18 and $h^x = 0.1D$ in the symmetry sector $N_{\rm sol}^{\rm OBC} = 5$ and C = +1 (red circle) and C = -1 (blue triangle). The black solid line and green square represent the Page value [117] and the EE of the QMBS state $|S_5\rangle$, respectively. (b) Size dependence of the Half-chain von Neumann entanglement entropy of the QMBS state $|S_n\rangle$, where $n = \lfloor M/4 \rfloor + 2$ with $\lfloor \cdot \rfloor$ being the floor function.

Rydberg atom system (backup 3)

FIG. 4: (a) Time evolution of S_j^x for M = 16 and $h^x = 0.1D$. Here, we use the Hamiltonian (5). (b) Time evolution of the fidelity $|\langle xN\acute{e}e||\psi(t)\rangle|^2$ for the same parameters of (a), where $|\psi(t)\rangle$ is the wave function at time t.

40/31

Rydberg atom system (backup 4)

• Level statistics (weak to moderate field)

