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• How to identify the location of D-branes from QFT side 

• Notion of wave packet in operator/path-integral formalism 

(c.f. lectures by Hanada)
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 Introduction:gauge/gravity duality

4

conjecture from 2 descriptions of Dp-branes in string theory;

D-branes & string

Theory of closed strings 
in D-brane geometry

Effective theory of  
open strings on branes

QFT 

(Super Yang-Mills theory)
GR in curved spacetime

Expected to be obtained by the nonperturbative aspects of string theory
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Position of D-branes & open strings

5

xμ

xν xI
μ, ν = 0,⋯, p
I, J = p + 1,⋯,9

( )XI =

∫ dp+1x tr ( 1
4

F 2
μν +

1
2

(DμXI)2 +
g2

4
[XI, XJ]2 + (fermion terms))

 :  hermitian matricesXI(x) N × N

The above interpretation is also feasible  
in the ’t Hooft limit ( ,  :fixed, )  
and strong coupling (:low energy),  
where the dual gravity has been known.

N → ∞ λ = g2N ∼ N0 E ∼ N2

[Witten, (1995)]

Effective action 

diagonal : position of D-branes 
off-diagonal : open strings among D-branes( )XI = ⋱

Low-energy or classical states 
→ X : simultaneously diagonal 

[Polchinski, (1998/1999) / Susskind, (1999) / Hanada, (2021)]
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Review: Matrix Quantum Mechanics

6

ℋ = Span { |X⟩; X̂I,a |X⟩ = XI,a |X⟩} = Span { |P⟩; ̂PI,a |P⟩ = PI,a |P⟩}

X̂I,ij =
N2

∑
a=1

X̂I,aτa
ij, ̂PI,ij =

N2

∑
a=1

̂PI,aτa
ij  : generator of τa G = U(N )

Quantum Mechanics with  degrees of freedom dN2 (I, J = p + 1,⋯, d + p + 1)

[X̂I,a, ̂PJ,b] = iδIJδab

Z(T ) =
1

VolG ∫G
dg Trℋ ( ̂g e−Ĥ/T) = Trℋinv (e−Ĥ/T)

→ each matrix element is operator

• Hilbert space;

“coordinate basis” “momentum basis”

Uncertainty relation
tr(τaτb) = δab

∑
a

(τij
a τkl

a ) =
1
N

δikδ jl

• Partition function
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Notion of wave packet

7

|Φ⟩ = ∫ℝdN2
dX |X⟩⟨X |Φ⟩ = ∫ℝdN2

dX Φ(X) |X⟩

In order to identify the location, consider the wave packet in -dim spacedN2

and the center of ,Φ(X) YI,ij [Hanada (2021)](c.f. coherent state)

How to identify the position of D-branes?

X̂I,a |X⟩ = XI,a |X⟩ : coordinate eigenvalue❌

Inconsistent in terms of the uncertainty relation and far from the classical picture…

✔

[Hanada (2021)]
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Wave packet in color space

8

[Hanada (2021)]

|Φ⟩ = ∫ℝdN2
dX |X⟩⟨X |Φ⟩ = ∫ℝdN2

dX Φ(X) |X⟩

X̂I,ij → (UX̂IU−1)ij
=

N

∑
k,l=1

UikX̂I,klU−1
lj =: X̂(U)

I,ij

Gauge transformation

provides the gauge orbit of YI,a

ℝdN2

tr Y2
I

YI,ij

Y (U)
I,ij

Y (U′￼)
I,ij

• the position of the wave packet moves 
⇔ “diagonalizability” of  

• the shape and distance from origin  
of the wave packet are invariant

Y

( )YI = ⋱

O(1)

the wave packet in -dim space and the center of itdN2

The center  determines the location of D-branes!YI
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Determination of wave packet

9

[Hanada (2021)]

⟨Φ | X̂I |Φ⟩ = YI, ⟨Φ | ̂PI |Φ⟩ = QI, ⋯min
Φ

⟨Φ | Ĥ |Φ⟩

How to identify the low-energy wave function for interacting theory?

with given 

Proposal 1 (Hamiltonian formalism)

ĤA(s) = tr ( 1
2

̂P2
I +

m2(s)
2

X̂2
I −

g2(s)
4

[X̂I, X̂J]2)

If we set ,  is the ground state. 
We can prepare such a state by the technique of quantum computation.

YI = 0, QI = 0 |Φ⟩ = |YI = 0, QI = 0⟩

e.g.) Adiabatic state preparation

|ground state⟩ = lim
sf→∞

T exp (−i∫
sf

0
ds ĤA(s)) |ground state⟩0

ground state of  is constructed from known & unique ground state of Ĥtarget Ĥ0

ĤA(s = 0) = Ĥ0

ĤA(s = sf) = Ĥtarget
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Determination of wave packet

10

[Hanada (2021)]

⟨Φ | X̂I |Φ⟩ = YI, ⟨Φ | ̂PI |Φ⟩ = QI, ⋯min
Φ

⟨Φ | Ĥ |Φ⟩

How to identify the low-energy wave function for interacting theory?

with given 

Proposal 1 (Hamiltonian formalism)

[Hanada, Kanno, Matsuura, HW, in progress]

R∞(U, X, Y (trial)) := max
I,a (X(U)

I − Y (trial)
I )a

• Prepare , and with given  find a unitary matrix  minimizing {XI} Y (trial)
I U R∞

• Vary  searching  Y (trial)
I min

Y
R∞(U, X, Y )

Proposal 2 (Path-integral formalism)

ℝdN 2

tr Y 2
I

YI,a

Y (U )
I,a

Y (U′￼)
I,a

⇔ find the location and width of wave packet with guessing the center of it

→    is gauge invariant ⟨R∞(Umin, X, Ymin)⟩

: -distance or Chebyshev distanceL∞
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Search of minimum

12

F(X )

Xi

❌  hard

 : some function to be minimizedF(X)

F(X )

Xi

X trial
i

✔︎ easy

Xmin
i

However, it’s often troublesome by being  
trapped in the local minima. 
→ we sometimes give up to obtain the true minimum. 

c.f. loss surface of DNN 
from [Ulmer, (arXiv:2101.00674)]

A common problem we face;

The idea of importance sampling (Monte Carlo method)  
is applicable and powerful to this problem.
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Replica-Exchange Monte Carlo (REMC)

13

[Swendsen, Wang, (1986) / Geyer, (1991)]

β1 < β2 < ⋯ < βM

β1F(X )

β2F(X )

βMF(X )

⋮

• Prepare  replica (copy of system)  
with different “temperature”

M

• Perform MCMC on each replica  
independently and generate  

• Exchange configurations  &  

( ) with weight

Xm Xm+1

m = 1,⋯, M − 1

X1, X2, ⋯, XM

ΔS := βmF(Xm+1) + βm+1F(Xm)
−βmF(Xm) − βm+1F(Xm+1)

c.f. [textbook by Hanada, Matsuura, (2021/2022)]

Escapable from minima via high-T replica  
→sampling efficiency has been improved!

which changes the scaling of pot. barrier 

 : same function among replicasF(X )

(:Metropolis test)

known also as the parallel tempering, is good at searching global minimum config.;
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An extension of REMC

14

extend by introducing “evaluation function” on each replica 

β1R2(X )

β2R3(X )

βMRM+1(X )

⋮

Rp(X(U)) = (∑
a

|X(U)
I − YI |

p
a )

1/p

Still severe to minimize the -distance due to the huge #local minimaL∞

R∞(X(U)) = max
I,a

|X(U)
I − YI |a

original problem new problem

β1F(X )

β2F(X )

βMF(X )

⋮

: -distanceL∞ : -distanceLp
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Algorithm of extended REMC

15

β1 < β2 < ⋯ < βM

• Prepare  replica (copy of system)  
with different “temperature”

M

• Perform MCMC on each replica  
independently and generate  

• Exchange configurations  &  

( ) with weight by 

Xm Xm+1

m = 1,⋯, M − 1 p

ΔSp := βmRp(Xm+1) + βm+1Rp+1(Xm)
−βmRp(Xm) − βm+1Rp+1(Xm+1)

which changes the scaling of pot. barrier 
β1R2(X )

β2R3(X )

βMRM+1(X )

⋮

Rp(X(U)) = (∑
a

|X(U)
I − YI |

p
a )

1/p

• Introducing some ‘cutoff’  

• optimizing  on each replica
M

Rp

X1, X2, ⋯, XM
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Properties of extended REMC

16

•MCMC algorithm in each replica → guaranteed it could work  

• Different pot. structure among replicas → many minimizing path 
∵) for an  
 
but not satisfied 
 

• Less local minima for smaller  

∵)     is gauge inv. 

•  for sufficiently large  

X

p

F2(X(U)) = tr(X(U)
I − YI)2

Rp(X) ≈ Rp+1(X) p

R2(X) ≥ R3(X) ≥ ⋯ ≥ R∞(X) ≥ 0 : monotonic series of X

β1R2(X )

β2R3(X )

βMRM+1(X )

⋮

β2R2(X) ≥ β3R3(X) ≥ ⋯ ≥ βMRM(X), β2 < β3 < ⋯ < βM
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Mock-data setup

18

Consider the simple setup (  case) I = 1

Xij =
N2−1

∑
a=1

Xaτa
ij, Xa = 1

tr τaτb = δab  :  generatorτa SU(N )

Z = VXV−1

and prepare the mock data  by randomly generating the unitary matrices Z V

R∞(U, Z) := max
a

Z(U)
a

R∞(U, X) = 1

•Demonstration that the algorithm works well and optimize the distance 

• Comparison with the standard REMC 

(C = O)
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0.990662 
0.991926 
0.994632 
0.997921 
1.000019 
1.000333 
1.000921 
1.001330 
1.001429 
1.001482 
1.001692 
1.002493 
1.003807 
1.005307 
1.005908

0.974580 
0.982464 
0.985314 
0.989367 
0.993501 
0.994553 
1.000397 
1.002344 
1.003228 
1.009786 
1.010196 
1.012892 
1.013082 
1.013474 
1.013684

standard extended

Za (exact value : )Xa = 1

Demonstration:  matrix4 × 4 , (pmin, pmax) = (2, 500) βp = p

Minimization :  matrix 4 × 4

preliminary
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MC time :  matrix 4 × 4

20

 constructed by 10 different unitary matrix Z V

MC time (iteration)
(#replica = 100, (threshold) = 1.025)

standard REMC
extended REMC

preliminary
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Minimization :  matrix 6 × 6

21

0.576161 
0.736379 
0.824971 
0.882625 
0.910872 
0.918226 
1.003542 
… 
1.043846 
1.045241 
1.045690 
1.045949 
1.046511 
1.047045 
1.047336

0.552661 
0.683123 
0.710418 
0.824777 
0.862196 
0.939672 
0.959044 
… 
1.068943 
1.072758 
1.072943 
1.075320 
1.075803 
1.077198 
1.077872

standard extended

Za (exact value : )Xa = 1

Demonstration:  matrix6 × 6 , (pmin, pmax) = (2, 1000) βp = p

preliminary
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MC time :  matrix6 × 6
(#replica = 500, (threshold) = 1.025)

 constructed by 10 different unitary matrix Z V

MC time (iteration)

standard REMC
extended REMC

preliminary
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Summary & Prospectives

23

• Locations of D-branes can be determined by identifying the 
center of the wave packet in the color space. 

• In the path-integral formalism, it corresponds to find 
 
  
for the field . 

• We employ the Replica-exchange Monte Carlo method and its 
extended version to solve the optimization problem.

XI

min
U∈SU(N)

max
I,a

(U†XIU − YI)a

• Application to more physically-meaningful models. 

• (0+0)-dim, (0+1)-dim matrix model (e.g. w/ 3 matrices) 

• Application to more generic setup (including outside the physics)



Backup
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A puzzle

25

⟨tr X2
I ⟩ ∼ N2

☆ eigenvalues of  is of order  → eigenvalues of  is of order X2
I N XI N

: ’t Hooft counting

e.g.)  case; D3-brane effective theoryp = 3
[Polchinski, (1998/1999) / Susskind, (1999)]

QFT side gravity (string theory) side

rtypical ≃ N1/2 r ∼ (factor) ⋅ RAdS

[Maldacena, (1997) / Gubser, Klebanov, Polyakov, (1998) / Witten, (1998)]AdS5/CFT4 correspondence

RAdS ∼ N1/2

Note also that  are not diagonalized simultaneously.XI
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Reason for the discrepancy

26

⟨tr X2
I ⟩ ∼ N2

☆ eigenvalues of  is of order  → eigenvalues of  is of order X2
I N XI N

: ’t Hooft counting

[Hanada (2021)]

❌Wrong!

Assumption;  
The operator  s.t.  provides the Hermitian matrix .X̂I X̂I,a |X⟩ = XI,a |X⟩ XI

[X̂I,a, ̂PJ,b] = iδIJδab, ΔXI,aΔPJ,b > N0δIJδab∼

However, uncertainty relation

the coordinate eigenstate  contains various momentum modes 
and therefore it is inappropriate for the low-energy state!

|X⟩

X̂I,ij =
N2

∑
a=1

X̂I,aτa
ij, ̂PI,ij =

N2

∑
a=1

̂PI,aτa
ij  :  generatorsτa U(N )

✔︎

✔︎


