単調性を用いたレプリカ交換モンテカルロ法 の拡張と行列幾何学

渡辺 展正
（KEK \rightarrow 9月よりYITP）

共同研究者：花田政範（Univ．Surrey），松浦壮（慶應大），菅野聡（筑波大） （Work in progress）

2022／09／22
基研研究会「熱場の量子論とその応用」

Contents

－Motivation from the gauge／gravity duality
－How to identify the location of D－branes from QFT side
－Notion of wave packet in operator／path－integral formalism
－How to solve the optimization problem
－Replica－Exchange Monte Carlo method and its extension
－Numerical demonstration
－Summary \＆Prospectives

Contents

－Motivation from the gauge／gravity duality
－How to identify the location of D－branes from QFT side
－Notion of wave packet in operator／path－integral formalism
－How to solve the optimization problem
－Replica－Exchange Monte Carlo method and its extension
－Numerical demonstration
－Summary \＆Prospectives

場の理論の新しい訊算方法2022
量子計算とテンソルネットワークに関するサマースクール

12th（Mon）－－16th（Fri）September， 2022
パナソニック国際交流ホール（＋zoom）

Introduction：gauge／gravity duality

conjecture from 2 descriptions of Dp－branes in string theory；

Expected to be obtained by the nonperturbative aspects of string theory

Position of D－branes \＆open strings

Effective action

$$
\begin{array}{r}
\int \mathrm{d}^{p+1} x \operatorname{tr}\left(\frac{1}{4} F_{\mu \nu}^{2}+\frac{1}{2}\left(D_{\mu} X_{I}\right)^{2}+\frac{g^{2}}{4}\left[X_{I}, X_{J}\right]^{2}+(\text { fermion terms })\right. \\
X_{I}(x): N \times N \text { hermitian matrices }
\end{array}
$$

Low－energy or classical states
$\rightarrow X$ ：simultaneously diagonal
diagonal ：position of D－branes
off－diagonal ：open strings among D－branes
［Witten，（1995）］

The above interpretation is also feasible in the＇t Hooft limit（ $N \rightarrow \infty, \lambda=g^{2} N \sim N^{0}$ ：fixed，$E \sim N^{2}$ ） and strong coupling（：low energy）， where the dual gravity has been known．

Review：Matrix Quantum Mechanics

Quantum Mechanics with $d N^{2}$ degrees of freedom（ $I, J=p+1, \cdots, d+p+1$ ）
\rightarrow each matrix element is operator

$$
\hat{X}_{I, i j}=\sum_{a=1}^{N^{2}} \hat{X}_{I, a} \tau_{i j}^{a}, \quad \hat{P}_{I, i j}=\sum_{a=1}^{N^{2}} \hat{P}_{I, a} \tau_{i j}^{a}
$$

$$
\tau^{a}: \text { generator of } G=\mathrm{U}(N)
$$

$$
\operatorname{tr}\left(\tau_{a} \tau_{b}\right)=\delta_{a b}
$$

Uncertainty relation

$$
\left[\hat{X}_{I, a}, \hat{P}_{J, b}\right]=\mathrm{i} \delta_{I J} \delta_{a b}
$$

$$
\sum_{a}\left(\tau_{a}^{i j} \tau_{a}^{k l}\right)=\frac{1}{N} \delta^{i k} \delta^{j l}
$$

－Hilbert space；

$$
\mathscr{H}=\operatorname{Span}\left\{|X\rangle ; \hat{X}_{I, a}|X\rangle=X_{I, a}|X\rangle\right\}=\operatorname{Span}\left\{|P\rangle ; \hat{P}_{I, a}|P\rangle=P_{I, a}|P\rangle\right\}
$$

> "coordinate basis" "momentum basis"
－Partition function

$$
Z(T)=\frac{1}{\operatorname{Vol} G} \int_{G} \mathrm{~d} g \operatorname{Tr}_{\mathscr{H}}\left(\hat{g} \mathrm{e}^{-\hat{H} / T}\right)=\operatorname{Tr}_{\mathscr{H}} \operatorname{inv}\left(\mathrm{e}^{-\hat{H} / T}\right)
$$

Notion of wave packet

How to identify the position of D－branes？

$$
\mathbf{X} \quad \hat{X}_{I, a}|X\rangle=X_{I, a}|X\rangle \quad \text { : coordinate eigenvalue }
$$

Inconsistent in terms of the uncertainty relation and far from the classical picture．．．

In order to identify the location，consider the wave packet in $d N^{2}$－dim space

$$
|\Phi\rangle=\int_{\mathbb{R}^{d N^{2}}} \mathrm{~d} X|X\rangle\langle X \mid \Phi\rangle=\int_{\mathbb{R}^{d N^{2}}} \mathrm{~d} X \Phi(X)|X\rangle
$$

and the center of $\Phi(X), \quad Y_{I, i j}$
（c．f．coherent state）

Wave packet in color space

the wave packet in $d N^{2}$－dim space and the center of it

$$
|\Phi\rangle=\int_{\mathbb{R}^{d N^{2}}} \mathrm{~d} X|X\rangle\langle X \mid \Phi\rangle=\int_{\mathbb{R}^{d N^{2}}} \mathrm{~d} X \Phi(X)|X\rangle \quad Y_{I}=\left(\begin{array}{ll}
\\
& \\
& \\
& \\
& \\
\end{array}\right.
$$

The center Y_{I} determines the location of D－branes！
Gauge transformation

$$
\hat{X}_{l, i j} \rightarrow\left(U \hat{X}_{I} U^{-1}\right)_{i j}=\sum_{k, l=1}^{N} U_{i k} \hat{X}_{l, k l} U_{l j}^{-1}=: \hat{X}_{I, i j}^{(U)}
$$

provides the gauge orbit of $Y_{I, a}$
－the position of the wave packet moves
\Leftrightarrow＂diagonalizability＂of Y
－the shape and distance from origin

Determination of wave packet

How to identify the low－energy wave function for interacting theory？
Proposal 1 （Hamiltonian formalism）
［Hanada（2021）］

$$
\min _{\Phi}\langle\Phi| \hat{H}|\Phi\rangle \quad \text { with given } \quad\langle\Phi| \hat{X}_{I}|\Phi\rangle=Y_{I}, \quad\langle\Phi| \hat{P}_{I}|\Phi\rangle=Q_{I}, \quad \cdots
$$

If we set $Y_{I}=0, Q_{I}=0,|\Phi\rangle=\left|Y_{I}=0, Q_{I}=0\right\rangle$ is the ground state．
We can prepare such a state by the technique of quantum computation．
e．g．）Adiabatic state preparation

$$
\hat{H}_{A}(s)=\operatorname{tr}\left(\frac{1}{2} \hat{P}_{I}^{2}+\frac{m^{2}(s)}{2} \hat{X}_{I}^{2}-\frac{g^{2}(s)}{4}\left[\hat{X}_{I}, \hat{X}_{J}\right]^{2}\right) \quad \begin{aligned}
& \hat{H}_{A}(s=0)=\hat{H}_{0} \\
& \hat{H}_{A}\left(s=s_{\mathrm{f}}\right)=\hat{H}_{\text {target }}
\end{aligned}
$$

ground state of $\hat{H}_{\text {target }}$ is constructed from known \＆unique ground state of \hat{H}_{0}

$$
\left.\mid \text { ground state }\rangle=\lim _{s_{\mathrm{f}} \rightarrow \infty} \mathrm{~T} \exp \left(-\mathrm{i} \int_{0}^{s_{\mathrm{f}}} \mathrm{~d} s \hat{H}_{A}(s)\right) \mid \text { ground state }\right\rangle_{0}
$$

Determination of wave packet

How to identify the low－energy wave function for interacting theory？
Proposal 1 （Hamiltonian formalism）［Hanada（2021）］
$\min \langle\Phi| \hat{H}|\Phi\rangle \quad$ with given
$\langle\Phi| \hat{X}_{I}|\Phi\rangle=Y_{I}$,
$\langle\Phi| \hat{P}_{I}|\Phi\rangle=Q_{I}, \quad \cdots$

Proposal 2 （Path－integral formalism）［Hanada，Kanno，Matsuura，HW，in progress］
－Prepare $\left\{X_{I}\right\}$ ，and with given $Y_{I}^{(\text {trial）}}$ find a unitary matrix U minimizing R_{∞}

$$
R_{\infty}\left(U, X, Y^{(\text {trial })}\right):=\max _{I, a}\left|\left(X_{I}^{(U)}-Y_{I}^{(\text {trial })}\right)_{a}\right|
$$

：L_{∞}－distance or Chebyshev distance
－Vary $Y_{I}^{(\text {rial）})}$ searching $\min _{Y} R_{\infty}(U, X, Y)$
$\rightarrow\left\langle R_{\infty}\left(U_{\text {min }}, X, Y_{\text {min }}\right)\right\rangle$ is gauge invariant
\Leftrightarrow find the location and width of wave packet with guessing the center of it

Contents

－Motivation from the gauge／gravity duality
－How to identify the location of D－branes from QFT side
－Notion of wave packet in operator／path－integral formalism
－How to solve the optimization problem
－Replica－Exchange Monte Carlo method and its extension
－Numerical demonstration
－Summary \＆Prospectives

Search of minimum

A common problem we face；$F(X)$ ：some function to be minimized

c．f．loss surface of DNN
from［Ulmer，（arXiv：2101．00674）］
The idea of importance sampling（Monte Carlo method） is applicable and powerful to this problem．

However，it＇s often troublesome by being trapped in the local minima．
\rightarrow we sometimes give up to obtain the true minimum．

Replica－Exchange Monte Carlo（REMC）

［Swendsen，Wang，（1986）／Geyer，（1991）］
known also as the parallel tempering，is good at searching global minimum config．；
－Prepare M replica（copy of system） with different＂temperature＂

$$
\beta_{1}<\beta_{2}<\cdots<\beta_{M}
$$

which changes the scaling of pot．barrier
－Perform MCMC on each replica independently and generate

$$
X_{1}, X_{2}, \cdots, X_{M}
$$

－Exchange configurations $X_{m} \& X_{m+1}$
（ $m=1, \cdots, M-1$ ）with weight
（：Metropolis test）

$$
\begin{aligned}
\Delta S:= & \beta_{m} F\left(X_{m+1}\right)+\beta_{m+1} F\left(X_{m}\right) \\
& -\beta_{m} F\left(X_{m}\right)-\beta_{m+1} F\left(X_{m+1}\right)
\end{aligned}
$$

$F(X)$ ：same function among replicas

Escapable from minima via high－T replica \rightarrow sampling efficiency has been improved！
c．f．［textbook by Hanada，Matsuura，（2021／2022）］

An extension of REMC

Still severe to minimize the L_{∞}－distance due to the huge \＃local minima
original problem

$$
\begin{array}{r}
R_{\infty}\left(X^{(U)}\right)=\max _{I, a}\left|X_{I}^{(U)}-Y_{I}\right|_{a} \\
: L_{\infty} \text {-distance }
\end{array}
$$

new problem

$$
\begin{gathered}
R_{p}\left(X^{(U)}\right)=\left(\sum_{a}\left|X_{I}^{(U)}-Y_{I}\right|_{a}^{p}\right)^{1 / p} \\
: L_{p} \text {-distance }
\end{gathered}
$$

extend by introducing＂evaluation function＂on each replica

Algorithm of extended REMC

－Prepare M replica（copy of system） with different＂temperature＂

$$
\beta_{1}<\beta_{2}<\cdots<\beta_{M}
$$

which changes the scaling of pot．barrier
－Perform MCMC on each replica independently and generate

$$
X_{1}, X_{2}, \cdots, X_{M}
$$

－Exchange configurations $X_{m} \& X_{m+1}$ （ $m=1, \cdots, M-1$ ） with weight by p

$$
\begin{aligned}
\Delta S_{p}:= & \beta_{m} R_{p}\left(X_{m+1}\right)+\beta_{m+1} R_{p+1}\left(X_{m}\right) \\
& -\beta_{m} R_{p}\left(X_{m}\right)-\beta_{m+1} R_{p+1}\left(X_{m+1}\right)
\end{aligned}
$$

－Introducing some＇cutoff＇M
－optimizing R_{p} on each replica

Properties of extended REMC

－MCMC algorithm in each replica \rightarrow guaranteed it could work
－Different pot．structure among replicas \rightarrow many minimizing path
\because ）for an X

$$
R_{2}(X) \geq R_{3}(X) \geq \cdots \geq R_{\infty}(X) \geq 0 \quad: \text { monotonic series of } X
$$

but not satisfied

$$
\beta_{2} R_{2}(X) \geq \beta_{3} R_{3}(X) \geq \cdots \geq \beta_{M} R_{M}(X), \quad \beta_{2}<\beta_{3}<\cdots<\beta_{M}
$$

－Less local minima for smaller p
$\because \quad F_{2}\left(X^{(U)}\right)=\sqrt{\operatorname{tr}\left(X_{I}^{(U)}-Y_{I}\right)^{2}}$ is gauge inv．
－$R_{p}(X) \approx R_{p+1}(X)$ for sufficiently large p

Contents

－Motivation from the gauge／gravity duality
－How to identify the location of D－branes from QFT side
－Notion of wave packet in operator／path－integral formalism
－How to solve the optimization problem
－Replica－Exchange Monte Carlo method and its extension
－Numerical demonstration
－Summary \＆Prospectives

Mock－data setup

Consider the simple setup（ $I=1$ case）

$$
\begin{aligned}
X_{i j}=\sum_{a=1}^{N^{2}-1} X_{a} \tau_{i j}^{a}, \quad & X_{a}=1 \\
& \operatorname{tr} \tau^{a} \tau^{b}=\delta^{a b} \quad \tau^{a}: \mathrm{SU}(N) \text { generator }
\end{aligned}
$$

and prepare the mock data Z by randomly generating the unitary matrices V

$$
\begin{array}{rr}
Z=V X V^{-1} & (C=\mathbf{O}) \\
R_{\infty}(U, Z):=\max _{a}\left|Z^{(U)}\right|_{a} & R_{\infty}(U, X)=1
\end{array}
$$

－Demonstration that the algorithm works well and optimize the distance
－Comparison with the standard REMC

Minimization ： 4×4 matrix

Demonstration： 4×4 matrix $\quad\left(p_{\text {min }}, p_{\text {max }}\right)=(2,500), \beta_{p}=p$

$Z_{a} \quad$（exact value ：$X_{a}=1$ ）

standard	extended
0.974580	0.990662
0.982464	0.991926
0.985314	0.994632
0.989367	0.997921
0.993501	1.000019
0.994553	1.000333
1.000397	1.000921
1.002344	1.001330
1.003228	1.001429
1.009786	1.001482
1.010196	1.001692
1.012892	1.002493
1.013082	1.003807
1.013474	1.005307
1.013684	1.005908

MC time ： 4×4 matrix

$(\#$ replica $=100,($ threshold $)=1.025)$
MC time（iteration）

Minimization ： 6×6 matrix

Demonstration： 6×6 matrix $\quad\left(p_{\min }, p_{\max }\right)=(2,1000), \beta_{p}=p$

$Z_{a} \quad$（exact value ：$X_{a}=1$ ）

standard	extended
0.552661	0.576161
0.683123	0.736379
0.710418	0.824971
0.824777	0.882625
0.862196	0.910872
0.939672	0.918226
0.959044	1.003542
\ldots	\ldots
1.068943	1.043846
1.072758	1.045241
1.072943	1.045690
1.075320	1.045949
1.075803	1.046511
1.077198	1.047045
1.077872	1.047336

MC time ： 6×6 matrix

$(\#$ replica $=500,($ threshold $)=1.025)$
MC time（iteration）

Summary \＆Prospectives

－Locations of D－branes can be determined by identifying the center of the wave packet in the color space．
－In the path－integral formalism，it corresponds to find

$$
\min _{U \in \mathrm{SU}(N)} \max _{I, a}\left|\left(U^{\dagger} X_{I} U-Y_{I}\right)_{a}\right|
$$

for the field X_{I} ．
－We employ the Replica－exchange Monte Carlo method and its extended version to solve the optimization problem．
－Application to more physically－meaningful models．
－（0＋0）－dim，（0＋1）－dim matrix model（e．g．w／ 3 matrices）
－Application to more generic setup（including outside the physics）

Backup

A puzzle

e．g．）$p=3$ case；D3－brane effective theory

$$
\left\langle\operatorname{tr} X_{I}^{2}\right\rangle \sim N^{2} \quad: \text { 't Hooft counting }
$$

Σ eigenvalues of X_{I}^{2} is of order $N \rightarrow$ eigenvalues of X_{I} is of order \sqrt{N}
Note also that X_{I} are not diagonalized simultaneously．

AdS5／CFT4 correspondence

QFT side

gravity（string theory）side

Reason for the discrepancy

\star eigenvalues of X_{I}^{2} is of order $N \xrightarrow{\sim}$ eigenvalues of X_{I} is of order \sqrt{N}

Assumption；
The operator \hat{X}_{I} s．t．$\hat{X}_{I, a}|X\rangle=X_{I, a}|X\rangle$ provides the Hermitian matrix X_{I} ．

$$
\hat{X}_{I, i j}=\sum_{a=1}^{N^{2}} \hat{X}_{I, a} \tau_{i j}^{a}, \quad \hat{P}_{I, i j}=\sum_{a=1}^{N^{2}} \hat{P}_{I, a} \tau_{i j}^{a} \quad \tau^{a}: \mathrm{U}(N) \text { generators }
$$

However，uncertainty relation

$$
\left[\hat{X}_{I, a}, \hat{P}_{J, b}\right]=\mathrm{i} \delta_{I J} \delta_{a b}, \quad \Delta X_{I, a} \Delta P_{J, b} \gtrsim N^{0} \delta_{I J} \delta_{a b}
$$

the coordinate eigenstate $|X\rangle$ contains various momentum modes and therefore it is inappropriate for the low－energy state！

