冷却原子気体における 交流スピン伝導率

Yuta Sekino, Hiroyuki Tajima, & Shun Uchino, arXiv:2103.02418 (accepted by PRResearch) Hiroyuki Tajima, Yuta Sekino, & Shun Uchino, PRB 105, 064508 (2022)

関野裕太(理研CPR, 理研iTHEMS)

iTHEM\$ 共同研究者: 田島裕之(東大理) 内野瞬(原研先端研)

熱場の量子論2022 @京大基研 20th Sep, 2022

Outline of this talk

- 1. Introduction
- 2. Optical spin conductivity
 - Proposal of measurement
- 3. Theoretical studies
 - Formalism
 - Fermi superfluids
 - Tomonaga-Luttinger liquid
- 4. Summary

Outline of this talk

1. Introduction

- 2. Optical spin conductivity
 - Proposal of measurement
- 3. Theoretical studies
 - Formalism
 - Fermi superfluids
 - Tomonaga-Luttinger liquid
- 4. Summary

Ultracold atoms

Very pure & highly controllable atomic gases

Ideal research platform for quantum many-body phenomena

From Schauss Group, University of Virginia (<u>https://ultracold.phys.virginia.edu/public_html/</u>)

High controllability

1. Quantum statistics & spin degrees of freedom

Bose atom: ⁷Li, ²³Na, ³⁹K,... Fermi atom: ⁶Li, ⁴⁰K,...

2. Spatial geometry of gas

3D, 2D, 1D, Lattice, …

1D

Cubic lattice

Hyperfine states

 Signal (arb. units)

Spin

5/29

Yang et al.(Virginia), PRX Quantum (2021)

Bloch, Nat. Phys. (2005)

High controllability

1. Quantum statistics & spin degrees of freedom

Bose atom: ⁷Li, ²³Na, ³⁹K,… Fermi atom: ⁶Li, ⁴⁰K,…

Hyperfine states Spin

2. Spatial geometry of gas

3D, 2D, 1D, Lattice, ...

3. Interaction between atoms

Feshbach resonance, Lattice depth, …

Major research directions

Ideal platform to study quantum many-body phenomena

- 1. Novel quantum phenomena
- 2. Quantum computation
- 3. Analog quantum simulation: cold-atomic systems equivalent/similar to other interesting systems

© HENNING DALHOFF/SCIENCE PHOTO LIBRARY https://www.riken.jp/en/news_pubs/research_news/rr/20200207_2/index.html

Various many-body states with spin

Fermi superfluid (BCS-BEC crossover)

Spinor Bose-Einstein Condensate (BEC)

Heisenberg antiferromagnet

8/29

Regal et al., (JILA) PRL (2004)

Stenger et al., (MIT) Nature (1998)

Mazurenko et al., (Harvard) Nature (2017)

Spin dynamics with cold atoms

Ideal experimental grounds to study spin dynamics Spin-resolved manipulation & detection

2. Spin impurity on lattice

Spin dynamics with cold atoms

Ideal experimental grounds to study spin dynamics Spin-resolved manipulation & detection

Today's topic

Optical (AC) spin conductivity

$$\sigma_{\alpha,\beta}^{(S)}(\omega) = \tilde{J}_{S,\alpha}(\omega) / \tilde{f}_{\beta}(\omega)$$

Measurable in cold-atom experiments

YS, Tajima, & Uchino, accepted by PRResearch (2022)

 $(\alpha, \beta = x, y, z)$

Significance of $\sigma_{\alpha\beta}^{(S)}(\omega)$

YS, Tajima, & Uchino, accepted by PRResearch (2022) Tajima, YS, & Uchino, PRB (2022)

- 1. Elusive in solid-state systems
- Powerful probe for quantum many-body states
 BCS-BEC crossover, Tomonaga-Luttinger liquid(TLL), Spinor BEC,…
- 3. Widely applicable probe for clean systems

2. Optical conductivity for solids

Powerful probe for exotic electron systems

Superconductor, Pseudogap phase, Non-Fermi liquid, Dirac fermions, …

12/29

Optical spin conductivity would also be a useful probe for nontrivial spin dynamics

Outline of this talk

13/29

1. Introduction

- 2. Optical spin conductivity
 - Proposal of measurement
- 3. Theoretical studies
 - Formalism
 - Fermi superfluids
 - Tomonaga-Luttinger liquid
- 4. Summary

Measurement scheme: set up

Total Hamiltonian:

 $H(t) = H + \delta H_{\beta}(t)$

Cold atoms with spin (at least S_z) conserved Spin: S=1/2, 1, 3/2, … Zeeman field, synthetic gauge field, … trap & lattice potentials, …

BCS-BEC crossover, Spinor BEC, ferromagnets/antiferromagnets, …

(Extension to spin-nonconserving & nonequilibrium systems is possible)

YS, Tajima, & Uchino, arXiv:2103.02418

How to induce AC spin current

YS, Tajima, & Uchino, arXiv:2103.02418

15/29

Time-dependent force coupled to spin density Sz

 $\delta H_{\beta}(t) = -\int d\boldsymbol{r} f_{\beta}(t) r_{\beta} S_{z}(\boldsymbol{r}), \qquad (\beta = x, y, z)$

How to induce AC spin current

YS, Tajima, & Uchino, arXiv:2103.02418

16/29

Time-dependent force coupled to spin density Sz

 $\delta H_{\beta}(t) = -\int d\mathbf{r} f_{\beta}(t) r_{\beta} S_{z}(\mathbf{r}), \qquad (\beta = x, y, z)$

Single-frequency driving force toward $\beta = x, y, z$

 $f_{\beta}(t) = F_{\beta} \cos(\omega_0 t)$

- Magnetic field gradient Medley et al., (MIT) PRL (2011); Jotzu et al., (ETH) PRL (2015)
- 2. Optical Stern-Gerlach effect Taie et.al., (Kyoto) PRL (2010)

How to extract spin conductivity

YS, Tajima, & Uchino, arXiv:2103.02418

Time (ms)

1. Spin current:

- $\langle \boldsymbol{J}_{S}(t) \rangle = \frac{d}{dt} \left\langle \int d\boldsymbol{r} \, \boldsymbol{r} S_{z}(\boldsymbol{r}, t) \right\rangle \equiv \frac{d}{dt} \langle \boldsymbol{X}_{S}(t) \rangle$
- 2. Spin conductivity: $\langle \tilde{J}_{S,\alpha}(\omega) \rangle = \sigma_{\alpha\beta}^{(S)}(\omega) \tilde{f}_{\beta}(\omega)$

(Spin conservation)

*V/k*_B (μK

17/29

(Ohm's law in frequency space)

3. Driving force:

 $f_{\beta}(t) = F_{\beta} \cos(\omega_0 t)$

Sommer et al., (MIT) Nature (2011)

Outline of this talk

- 1. Introduction
- 2. Optical spin conductivity
 - Proposal of measurement
- 3. Theoretical studies
 - Formalism
 - Fermi superfluids
 - Tomonaga-Luttinger liquid
- 4. Summary

Theoretical studies

Our works on optical spin conductivity in homogeneous gases

YS, Tajima, & Uchino, arXiv:2103.02418 Tajima, YS, & Uchino, PRB (2022)

- 1. S=1/2 superfluid Fermi gas with spin gap
- 2. 1D p-wave Fermi superfluid with topological phase transition
- 3. Tomonaga-Luttinger liquid
- 4. S=1 polar BEC with gapped or gapless spin modes

General relations

Enss & Haussmann PRL (2012) Enss, Euro. Phys. J. Special Topics (2013)

YS, Tajima, & Uchino, arXiv:2103.02418 (\hbar =

$(\hbar = k_{\rm B} = 1)$

20/29

1. Kubo formula

$$\sigma_{\alpha\beta}^{(S)}(\omega) = \frac{i}{\omega^+} \left(\delta_{\alpha\beta} \sum_{s_z} \frac{s_z^2 N_{s_z}}{m} + \chi_{\alpha\beta}(\omega) \right) \qquad \qquad \alpha, \beta \in \{x, y, z\} \quad \omega^+ \equiv \omega + 0^+$$

 $\begin{array}{ll} \text{Magnetic quantum \#:} & s_z = -S, -S+1, \cdots, S\\ \text{Spin-current response func.:} & \chi_{\alpha\beta}(\omega) = -i \int_{-\infty}^{\infty} dt \, e^{i\omega^+ t} \theta(t) \langle [J_{S,\alpha}(t), J_{S,\beta}(0)] \rangle_{\text{eq}}\\ \text{Particle \# in the s}_z \text{ channel:} & N_{s_z} \end{array}$

2. f-sum rule

$$\int_{-\infty}^{\infty} \frac{d\omega}{\pi} \operatorname{Re} \sigma_{\alpha\beta}^{(S)}(\omega) = \delta_{\alpha\beta} \sum_{s_z} \frac{s_z^2 N_{s_z}}{m}$$

Outline of this talk

- 1. Introduction
- 2. Optical spin conductivity
 - Proposal of measurement
- 3. Theoretical studies
 - Formalism
 - Fermi superfluids
 - Tomonaga-Luttinger liquid
- 4. Summary

Superfluid Fermi gas

$$H = \int d\boldsymbol{x} \left[\sum_{\sigma=\uparrow,\downarrow} \psi_{\sigma}^{\dagger} \left(-\frac{\boldsymbol{\nabla}^2}{2m} - \mu \right) \psi_{\sigma} - g \psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} \psi_{\downarrow} \psi_{\uparrow} \right]$$

g > 0 : S-wave attraction

Randeria & Taylor (2014)

BCS-Leggett mean-field theory Eagles (1969); Leggett (1980)

BCS-BEC crossover

▶Chemical potential @ T=0

Result for a Fermi superfluid

YS, Tajima, & Uchino, arXiv:2103.02418

$$\operatorname{Re}\sigma_{xx}^{(S)}(\omega) \propto \sum_{\boldsymbol{k}} k_x^2 \delta(|\omega| - 2E_{\boldsymbol{k},\mathrm{F}})$$

- 1. Spin is insulated for small $\boldsymbol{\omega}$
- 2. Behaviors for $\omega \rightarrow 2E_{gap} + 0$ $\mu > 0 [(k_{Fa})^{-1} = -1, 0] \rightarrow \text{coherence peak}$ $\mu < 0 [(k_{Fa})^{-1} = 1] \rightarrow \text{decay}$

Topological Fermi superfluid

Tajima, YS, & Uchino, PRB (2022)

25/29

▶Fermi atoms in quasi 1D

$$H = \sum_{k,\sigma} \xi_k c_{k,\sigma}^{\dagger} c_{k,\sigma} + V, \qquad \xi_k = k^2/(2m) - \mu$$

P-wave Feshbach resonance in the $\uparrow - \downarrow$ channel:

$$V = -U \sum_{k,k',q} \frac{kk'}{c_{k+q/2,\uparrow}^{\dagger}} c_{-k+q/2,\downarrow}^{\dagger} c_{-k'+q/2,\downarrow} c_{k'+q/2,\uparrow}$$

Triplet paring
$$S = 1, S_z = 0$$

BdG Hamiltonian

$$H_{\rm MF} = \sum_{k} \Psi_{k}^{\dagger} H_{\rm BdG}(k) \Psi_{k} \qquad \Psi_{k} = \begin{pmatrix} c_{k,\uparrow} \\ c_{-k,\downarrow}^{\dagger} \end{pmatrix}$$

$$H_{\rm BdG}(k) = \boldsymbol{\sigma} \cdot \boldsymbol{R}(k) = -\sigma_x \Delta(k) + \sigma_z \xi_k,$$

$$\Delta(k) = kD \qquad (D > 0)$$

Class BDI with winding # $\nu \in \mathbb{Z}$

		TRS	PHS	SLS	d=1
Standard	A (unitary)	0	0	0	-
(Wigner-Dyson)	AI (orthogonal)	+1	0	0	-
	AII (symplectic)	-1	0	0	-
Chiral	AIII (chiral unitary)	0	0	1	\mathbb{Z}
(sublattice)	BDI (chiral orthogonal)	+1	+1	1	Z
	CII (chiral symplectic)	-1	-1	1	\mathbb{Z}
BdG	D	0	+1	0	\mathbb{Z}_2
	С	0	-1	0	-
	DIII	-1	+1	1	\mathbb{Z}_2
	CI	+1	-1	1	-

Schnyder, Ryu, Furusaki & Ludwig, PRB (2008)

Spectrum of spin conductivity

Tajima, YS, & Uchino, PRB (2022)

26/29

 $\operatorname{Re}\sigma^{(S)}(\omega) \propto \sum_{k} k^2 \delta(|\omega| - 2E_k)$

Tomonaga-Luttinger liquid

One-dimensional systems with spin-charge separation Described by 4 parameters v_c, v_s, K_c, K_s

27/29

Measurement of $v_c \& v_s$ Senaratne et al. (Rice), to be published in Science (2022)

K_s can be experimentally determined by spin conductivity at low frequency YS, Tajima, & Uchino, arXiv.2103.02418

$$\operatorname{Re}\sigma^{(S)}(\omega) \propto \omega^{4} K_{S}^{-5}$$

(Memory function method)

cf. Charge conductivity Giamarchi, PRB (1991); (1992)

Outline of this talk

- 1. Introduction
- 2. Optical spin conductivity
 - Proposal of measurement
- 3. Theoretical studies
 - Formalism
 - Fermi superfluids
 - Tomonaga-Luttinger liquid
- 4. Summary

Summary of this talk

Optical (AC) spin conductivity

Measurable in cold-atom experiments

$$\sigma_{\alpha,\beta}^{(S)}(\omega) = \tilde{J}_{S,\alpha}(\omega) / \tilde{f}_{\beta}(\omega)$$

 $(\alpha,\beta=x,y,z)$

29/29

Significance of $\sigma_{\alpha\beta}^{(S)}(\omega)$

YS, Tajima, & Uchino, accepted by PRResearch (2022) Tajima, YS, & Uchino, PRB (2022)

- 1. Elusive in solid-state systems
- 2. Powerful probe for quantum many-body states BCS-BEC crossover, Tomonaga-Luttinger liquid(TLL), Spinor BEC,…
- 3. Widely applicable probe for clean systems

Future perspective: Pseudogap of the unitary Fermi gas ?

30/29

Backup Slides

Ultracold atoms

Very pure & highly controllable atomic gases

$$n = 10^{13} - 10^{15} \text{ cm}^{-3}, T = 10^{-6} - 10^{-8} \text{ K} (\mu \text{ K} - \text{nK})$$

Coldest in the Universe !!

31/29

(cf. O₂ in a room: $n = 10^{19} \text{ cm}^{-3}$, $T = 10^{3} \text{ K}$)

From Schauss Group, University of Virginia (<u>https://ultracold.phys.virginia.edu/public_html/</u>)

Transport phenomena

1. AC spin transport

Hot topic in spintronics

Multilayer systems are considered

Ferromagnetic resonance in Multilayer systems Li et al., PRL (2016)

Bulk transport property $\sigma_{\alpha\beta}^{(S)}(\omega)$ is elusive !!

AC spin transport within bulk is accessible with cold atoms

3. Probe for clean gases

Optical mass conductivity for cold atoms

Proposal: Tokuno & Giamarchi, PRL (2011) Wu, Taylor, & Zaremba, EPR (2015)

Experiment: Anderson et. al., [Toronto group] PRL (2019)

34/29

Optical lattice is essential !!!

3. Probe for clean gases

Generalized Kohn's theorem: коhn (1961); Brey et al. (1989); Li et al. (1991) Strong constraint on mass conductivity of clean gases

35/29

Spin conductivity is never constrained and works as probes w/o lattice

How to extract spin conductivity

YS, Tajima, & Uchino, arXiv:2103.02418

1. Spin current:

- $\langle \boldsymbol{J}_{S}(t) \rangle = \frac{d}{dt} \left\langle \int d\boldsymbol{r} \, \boldsymbol{r} S_{z}(\boldsymbol{r}, t) \right\rangle \equiv \frac{d}{dt} \langle \boldsymbol{X}_{S}(t) \rangle$
- 2. Spin conductivity: $\langle \tilde{J}_{S,\alpha}(\omega) \rangle = \sigma_{\alpha\beta}^{(S)}(\omega) \tilde{f}_{\beta}(\omega)$

(Spin conservation)

36/29

(Ohm's law in frequency space)

3. Driving force:

 $f_{\beta}(t) = F_{\beta} \cos(\omega_0 t)$

e.g. Experiment on spin diffusion (w/o $~f_{\beta}(t)$)

 $\langle \boldsymbol{X}_{S}(t) \rangle = \langle \boldsymbol{X}_{\uparrow}(t) \rangle - \langle \boldsymbol{X}_{\downarrow}(t) \rangle$

Sommer et al., (MIT) Nature (2011)

Topological phase transition

Tajima, YS, & Uchino, PRB (2022)

Spectrum of spin conductivity

Tajima, YS, & Uchino, PRB (2022)

