泠却原子気体における交流スピン伝導率

Yuta Sekino，Hiroyuki Tajima，\＆Shun Uchino，arXiv：2103．02418（accepted by PRResearch） Hiroyuki Tajima，Yuta Sekino，\＆Shun Uchino，PRB 105， 064508 （2022）

関野 裕太（理研CPR，理研iTHEMS）

ITHEM．S ${ }^{\circ}$

共同研究者：

田島裕之（東大理）内野瞬（原研先端研）
熱場の量子論2022＠京大基研 20th Sep， 2022

Outline of this talk

1. Introduction
2. Optical spin conductivity

- Proposal of measurement

3. Theoretical studies

- Formalism
- Fermi superfluids
- Tomonaga-Luttinger liquid

4. Summary

Outline of this talk

1. Introduction
2. Optical spin conductivity

- Proposal of measurement

3. Theoretical studies

- Formalism
- Fermi superfluids
- Tomonaga-Luttinger liquid

1. Summary

Ultracold atoms

V Very pure \& highly controllable atomic gases
Ideal research platform for quantum many-body phenomena

High controllability

1. Quantum statistics \& spin degrees of freedom

Bose atom: ${ }^{7} \mathrm{Li},{ }^{23} \mathrm{Na},{ }^{39 \mathrm{~K}, \cdots}$
Fermi atom: ${ }^{6} \mathrm{Li},{ }^{40} \mathrm{~K}, \cdots$
Hyperfine states

2. Spatial geometry of gas

3D, 2D, 1D, Lattice, \cdots

Cubic lattice

Bloch, Nat. Phys. (2005)

Triangular lattice

Yang et al.(Virginia), PRX Quantum (2021)

High controllability

1. Quantum statistics \& spin degrees of freedom

Bose atom: ${ }^{7} \mathrm{Li},{ }^{23} \mathrm{Na},{ }^{39 \mathrm{~K}, \cdots}$
Fermi atom: ${ }^{6 L i}, 40 \mathrm{~K}, \cdots$

Hyperfine states

Spin
2. Spatial geometry of gas
3. Interaction between atoms

3D, 2D, 1D, Lattice, \cdots

Major research directions

Ideal platform to study quantum many-body phenomena

1. Novel quantum phenomena
2. Quantum computation
3. Analog quantum simulation:
cold-atomic systems equivalent/similar to other interesting systems

Neutron superfluid in neutron stars

Various many-body states with spin

Fermi superfluid (BCS-BEC crossover)

Regal et al., (JILA) PRL (2004)

Spinor Bose-Einstein Condensate (BEC)

Stenger et al., (MIT) Nature (1998)

Heisenberg antiferromagnet

Mazurenko et al.,(Harvard) Nature (2017)

Spin dynamics with cold atoms

Ideal experimental grounds to study spin dynamics Spin-resolved manipulation \& detection

2. Spin impurity on lattice

$\downarrow \downarrow \downarrow \uparrow \downarrow \downarrow \downarrow$

Fukuhara et al.,(MPI) Nat. Phys. (2013)

Spin dynamics with cold atoms

Ideal experimental grounds to study spin dynamics Spin-resolved manipulation \& detection

1. Spin diffusion w/o lattice
2. Spin impurity on lattice
3. AC spin transport (Our proposal)

YS, Tajima, \& Uchino, accepted by PRResearch (2022)

Driven by magnetic or optical fields

Today's topic

Optical (AC) spin conductivity

$$
\sigma_{\alpha, \beta}^{(S)}(\omega)=\tilde{J}_{S, \alpha}(\omega) / \tilde{f}_{\beta}(\omega)
$$

$(\alpha, \beta=x, y, z)$

Measurable in cold-atom experiments

Significance of $\underline{\sigma_{\alpha \beta}^{(S)}(\omega)}$
YS, Tajima, \& Uchino, accepted by PRResearch (2022) Tajima, YS, \& Uchino, PRB (2022)

1. Elusive in solid-state systems
2. Powerful probe for quantum many-body states

BCS-BEC crossover, Tomonaga-Luttinger liquid(TLL), Spinor BEC,…
3. Widely applicable probe for clean systems

2. Optical conductivity for solids

Powerful probe for exotic electron systems
Superconductor, Pseudogap phase, Non-Fermi liquid, Dirac fermions, …

Optical spin conductivity would also be a useful probe for nontrivial spin dynamics

Outline of this talk

1. Introduction

2. Optical spin conductivity

- Proposal of measurement

3. Theoretical studies

- Formalism
- Fermi superfluids
- Tomonaga-Luttinger liquid

4. Summary

Measurement scheme: set up

YS, Tajima, \& Uchino, arXiv:2103.02418

Total Hamiltonian:

$$
H(t)=H+\delta H_{\beta}(t)
$$

Cold atoms with spin (at least S_{z}) conserved Spin: $S=1 / 2,1,3 / 2, \cdots$
Zeeman field, synthetic gauge field, ... trap \& lattice potentials, \cdots

BCS-BEC crossover, Spinor BEC, ferromagnets/antiferromagnets, …
(Extension to spin-nonconserving \& nonequilibrium systems is possible)

How to induce AC spin current

Time-dependent force coupled to spin density S_{z}

$$
\delta H_{\beta}(t)=-\int d \boldsymbol{r} f_{\beta}(t) r_{\beta} S_{z}(\boldsymbol{r}), \quad(\beta=x, y, z)
$$

$1 \quad 1$

How to induce AC spin current

Time-dependent force coupled to spin density S_{2}

$$
\delta H_{\beta}(t)=-\int d \boldsymbol{r} f_{\beta}(t) r_{\beta} S_{z}(\boldsymbol{r}), \quad(\beta=x, y, z)
$$

Single-frequency driving force toward $\beta=x, y, z$

$$
f_{\beta}(t)=F_{\beta} \cos \left(\omega_{0} t\right)
$$

1. Magnetic field gradient Medley et al., (MIT) PRL (2011); Jotzu et al., (ETH) PRL (2015)
2. Optical Stern-Gerlach effect

Taie et.al., (Kyoto) PRL (2010)

How to extract spin conductivity

1. Spin current:

$$
\left\langle\boldsymbol{J}_{S}(t)\right\rangle=\frac{d}{d t}\left\langle\int d \boldsymbol{r} \boldsymbol{r} S_{z}(\boldsymbol{r}, t)\right\rangle \equiv \frac{d}{d t}\left\langle\boldsymbol{X}_{S}(t)\right\rangle
$$

(Spin conservation)
2. Spin conductivity: $\left\langle\tilde{J}_{S, \alpha}(\omega)\right\rangle=\sigma_{\alpha \beta}^{(S)}(\omega) \tilde{f}_{\beta}(\omega)$
(Ohm's law in frequency space)
3. Driving force:

$$
f_{\beta}(t)=F_{\beta} \cos \left(\omega_{0} t\right)
$$

$$
\frac{\left\langle\delta X_{S, \alpha}(t)\right\rangle}{F_{\beta}}=-\frac{\operatorname{Im} \sigma_{\alpha \beta}^{(S)}\left(\omega_{0}\right)}{\omega_{0}} \cos \left(\omega_{0} t\right)+\frac{\operatorname{Re} \sigma_{\alpha \beta}^{(S)}\left(\omega_{0}\right)}{\omega_{0}} \sin \left(\omega_{0} t\right)
$$

$$
\text { Measurement of }\left\langle X_{S, \alpha}(t)\right\rangle \quad \Rightarrow \sigma_{\alpha \beta}^{(S)}\left(\omega=\omega_{0}\right)
$$

e.g. Experiment on spin diffusion (w/o $f_{\beta}(t)$)

$$
\left\langle\boldsymbol{X}_{S}(t)\right\rangle=\left\langle\boldsymbol{X}_{\uparrow}(t)\right\rangle-\left\langle\boldsymbol{X}_{\downarrow}(t)\right\rangle
$$

Outline of this talk

1. Introduction

2. Optical spin conductivity

- Proposal of measurement

3. Theoretical studies

- Formalism
- Fermi superfluids
- Tomonaga-Luttinger liquid

4. Summary

Theoretical studies

Our works on optical spin conductivity in homogeneous gases

YS, Tajima, \& Uchino, arXiv:2103.02418
Tajima, YS, \& Uchino, PRB (2022)

T. $\mathrm{S}=1 / 2$ superfluid Fermi gas with spin gap
2. 1D p-wave Fermi superfluid with topological phase transition
3. Tomonaga-Luttinger liquid
4. $\mathrm{S}=1$ polar BEC with gapped or gapless spin modes

General relations

Enss \& Haussmann PRL (2012) Enss, Euro. Phys. J. Special Topics (2013)
YS, Tajima, \& Uchino, arXiv:2103.02418 $\quad\left(\hbar=k_{\mathrm{B}}=1\right)$

1. Kubo formula

$$
\sigma_{\alpha \beta}^{(S)}(\omega)=\frac{i}{\omega^{+}}\left(\delta_{\alpha \beta} \sum_{s_{z}} \frac{s_{z}^{2} N_{s_{z}}}{m}+\chi_{\alpha \beta}(\omega)\right) \quad \alpha, \beta \in\{x, y, z\} \quad \omega^{+} \equiv \omega+0^{+}
$$

Magnetic quantum \#: $\quad s_{z}=-S,-S+1, \cdots, S$
Spin-current response func.: $\quad \chi_{\alpha \beta}(\omega)=-i \int_{-\infty}^{\infty} d t e^{i \omega^{+} t} \theta(t)\left\langle\left[J_{S, \alpha}(t), J_{S, \beta}(0)\right]\right\rangle_{\mathrm{eq}}$ Particle \# in the $\mathrm{s} z_{z}$ channel: $\quad N_{s_{z}}$
2. f-sum rule

$$
\int_{-\infty}^{\infty} \frac{d \omega}{\pi} \operatorname{Re} \sigma_{\alpha \beta}^{(S)}(\omega)=\delta_{\alpha \beta} \sum_{s_{z}} \frac{s_{z}^{2} N_{s_{z}}}{m}
$$

Outline of this talk

1. Introduction

2. Optical spin conductivity

- Proposal of measurement

3. Theoretical studies

- Formalism
- Fermi superfluids
- Tomonaga-Luttinger liquid

4. Summary

Superfluid Fermi gas

$$
H=\int d x\left[\sum_{\sigma=\uparrow, \downarrow} \psi_{\sigma}^{\dagger}\left(-\frac{\boldsymbol{\nabla}^{2}}{2 m}-\mu\right) \psi_{\sigma}-g \psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} \psi_{\downarrow} \psi_{\uparrow}\right] \quad g>0: \text { S-wave attraction }
$$

Regal \& Jin (JILA), PRL(2003)

Randeria \& Taylor (2014)

BCS-BEC crossover

Chemical potential @ T=0

$$
\begin{gathered}
E_{\boldsymbol{k}, \mathrm{F}}=\sqrt{\left(\varepsilon_{\boldsymbol{k}}-\mu\right)^{2}+\Delta^{2}} \\
\left(\varepsilon_{\boldsymbol{k}}=\boldsymbol{k}^{2} / 2 m\right)
\end{gathered}
$$

Result for a Fermi superfluid

$(\mathrm{kFa})^{-1}=-1,0$

$$
\operatorname{Re} \sigma_{x x}^{(S)}(\omega) \propto \sum_{\boldsymbol{k}} k_{x}^{2} \delta\left(|\omega|-2 E_{k, F}\right)
$$

1. Spin is insulated for small ω
2. Behaviors for $\omega \rightarrow 2 E_{\text {gap }}+0$

$$
\begin{aligned}
& \mu>0\left[(\mathrm{kFa})^{-1}=-1,0\right] \rightarrow \text { coherence peak } \\
& \mu<0\left[(\mathrm{kFa})^{-1}=1\right] \quad \rightarrow \text { decay }
\end{aligned}
$$

$(\mathrm{kFa})^{-1}=1$

Topological Fermi superfluid

Tajima, YS, \& Uchino, PRB (2022)
Fermi atoms in quasi 1D

$$
H=\sum_{k, \sigma} \xi_{k} c_{k, \sigma}^{\dagger} c_{k, \sigma}+V, \quad \xi_{k}=k^{2} /(2 m)-\mu
$$

P-wave Feshbach resonance in the $\uparrow-\downarrow$ channel:

$$
V=-U \sum_{k, k^{\prime}, q} k k^{\prime} c_{k+q / 2, \uparrow}^{\dagger} c_{-k+q / 2, \downarrow}^{\dagger} c_{-k^{\prime}+q / 2, \downarrow} c_{k^{\prime}+q / 2, \uparrow}
$$

Triplet paring

$$
S=1, S_{z}=0
$$

BdG Hamiltonian

$$
H_{\mathrm{MF}}=\sum_{k} \Psi_{k}^{\dagger} H_{\mathrm{BdG}}(k) \Psi_{k} \quad \Psi_{k}=\binom{c_{k, \uparrow}}{c_{-k, \downarrow}^{\dagger}}
$$

$$
H_{\mathrm{BdG}}(k)=\boldsymbol{\sigma} \cdot \boldsymbol{R}(k)=-\sigma_{x} \Delta(k)+\sigma_{z} \xi_{k}
$$

$$
\Delta(k)=k D \quad(D>0)
$$

Class BDI with winding \# $\quad \nu \in \mathbb{Z}$

		TRS	PHS	SLS	$d=1$
Standard	A (unitary)	0	0	0	-
(Wigner-Dyson)	AI (orthogonal)	+1	0	0	-
	AII (symplectic)	-1	0	0	-

Chiral	AIII (chiral unitary)	0	0	1	\mathbb{Z}
(sublattice)	BDI (chiral orthogonal)	+1	+1	1	\mathbb{Z}
	CII (chiral symplectic)	-1	-1	1	\mathbb{Z}

> BdG

D	0	+1	0
C	0	-1	0
DIII	-1	+1	1
CI	+1	-1	1

Spectrum of spin conductivity

Tajima, YS, \& Uchino, PRB (2022)

Topological phase transition

Closing of the spectral gap

$$
\operatorname{Re} \sigma^{(S)}(\omega) \propto \sum_{k} k^{2} \delta\left(|\omega|-2 E_{k}\right)
$$

Tomonaga-Luttinger liquid

- One-dimensional systems with spin-charge separation

Described by 4 parameters $\mathrm{v}_{\mathrm{c}}, \mathrm{v}_{\mathrm{s}}, \mathrm{K}_{\mathrm{c}}, \mathrm{K}_{\mathrm{s}}$

Measurement of $v_{c} \& v_{s}$ Senaratne et al. (Rice), to be published in Science (2022)
K_{s} can be experimentally determined by spin conductivity at low frequency YS, Tajima, \& Uchino, arXiv:2103.02418
$\operatorname{Re} \sigma^{(S)}(\omega) \propto \omega^{4 K_{S}-5}$
(Memory function method)
cf. Charge conductivity
Giamarchi, PRB (1991); (1992)

Outline of this talk

1. Introduction

2. Optical spin conductivity

- Proposal of measurement

3. Theoretical studies

- Formalism
- Fermi superfluids
- Tomonaga-Luttinger liquid

4. Summary

Summary of this talk

Optical (AC) spin conductivity
Measurable in cold-atom experiments

$$
\sigma_{\alpha, \beta}^{(S)}(\omega)=\tilde{J}_{S, \alpha}(\omega) / \tilde{f}_{\beta}(\omega)
$$

Significance of $\underline{\sigma_{\alpha \beta}^{(S)}(\omega)}$
YS, Tajima, \& Uchino, accepted by PRResearch (2022) Tajima, YS, \& Uchino, PRB (2022)

1. Elusive in solid-state systems
2. Powerful probe for quantum many-body states BCS-BEC crossover, Tomonaga-Luttinger liquid(TLL), Spinor BEC, \cdots
3. Widely applicable probe for clean systems

Future perspective: Pseudogap of the unitary Fermi gas?

Backup Slides

Ultracold atoms

Very pure \& highly controllable atomic gases

$$
n=10^{13}-10^{15} \mathrm{~cm}^{-3}, T=10^{-6}-10^{-8} \mathrm{~K}(\mu \mathrm{~K}-\mathrm{nK})
$$

Coldest in the Universe !!
(cf. O_{2} in a room: $\mathrm{n}=10^{19} \mathrm{~cm}^{-3}, \mathrm{~T}=10^{3} \mathrm{~K}$)

Transport phenomena

2. DC spin conductivity

Nicholos et al.,(MIT) Nature (2019);

3. Optical (AC) conductivity

Anderson et. al.,,[Toronto group] PRL (2019)

4. Quantized conductance

Krinner et al.[EHT], Nature(2015)

1. AC spin transport

Hot topic in spintronics

Multilayer systems are considered

Bulk transport property $\sigma_{\alpha \beta}^{(S)}(\omega)$ is elusive !!

AC spin transport within bulk is accessible with cold atoms

3. Probe for clean gases

Optical mass conductivity for cold atoms

Proposal: Tokuno \& Giamarchi, PRL (2011)
Wu, Taylor, \& Zaremba, EPR (2015)
Experiment: Anderson et. al.,[Toronto group] PRL (2019)

Optical lattice is essential !!!

3. Probe for clean gases

Generalized Kohn's theorem: Kohn (1961); Brey et al. (1989); Li et al. (1991) Strong constraint on mass conductivity of clean gases

Spin conductivity is never constrained and
works as probes w/o lattice

How to extract spin conductivity

1. Spin current:

$$
\left\langle\boldsymbol{J}_{S}(t)\right\rangle=\frac{d}{d t}\left\langle\int d \boldsymbol{r} \boldsymbol{r} S_{z}(\boldsymbol{r}, t)\right\rangle \equiv \frac{d}{d t}\left\langle\boldsymbol{X}_{S}(t)\right\rangle
$$

(Spin conservation)
2. Spin conductivity: $\quad\left\langle\tilde{J}_{S, \alpha}(\omega)\right\rangle=\sigma_{\alpha \beta}^{(S)}(\omega) \tilde{f}_{\beta}(\omega)$
(Ohm's law in frequency space)
3. Driving force:

$$
f_{\beta}(t)=F_{\beta} \cos \left(\omega_{0} t\right)
$$

$$
\frac{\left\langle\delta X_{S, \alpha}(t)\right\rangle}{F_{\beta}}=-\frac{\operatorname{Im} \sigma_{\alpha \beta}^{(S)}\left(\omega_{0}\right)}{\omega_{0}} \cos \left(\omega_{0} t\right)+\frac{\operatorname{Re} \sigma_{\alpha \beta}^{(S)}\left(\omega_{0}\right)}{\omega_{0}} \sin \left(\omega_{0} t\right)
$$

$$
\text { Measurement of }\left\langle X_{S, \alpha}(t)\right\rangle \quad \Rightarrow \sigma_{\alpha \beta}^{(S)}\left(\omega=\omega_{0}\right)
$$

e.g. Experiment on spin diffusion (w/o $f_{\beta}(t)$)

$$
\left\langle\boldsymbol{X}_{S}(t)\right\rangle=\left\langle\boldsymbol{X}_{\uparrow}(t)\right\rangle-\left\langle\boldsymbol{X}_{\downarrow}(t)\right\rangle
$$

Tajima, YS, \& Uchino, PRB (2022)
Topological phase transition

Coherence Peak (CP) disappears

Topological phase transition at $\mu=0$

$$
\nu=1 \quad \rightarrow \quad \nu=0
$$

Quasiparticle energy $\quad E_{k}=\sqrt{\left(\varepsilon_{k}-\mu\right)^{2}+D^{2} k^{2}}$

w/ CP
w/o CP

Spectrum of spin conductivity

Tajima, YS, \& Uchino, PRB (2022)

Closing of the spectral gap of $\operatorname{Re} \sigma^{(S)}(\omega)$
Topological phase transition

