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Tensor network defines a set of  
reduced transition matrices 

They describe entanglement distillation via geometry

The method works for arbitrary tensor networks;  
a systematic, quantitative study of states vs. geometry  

in tensor networks is now possible

Take-home message
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Motivation: Understanding AdS/CFT from entanglement

(d+1)-dim. AdS spacetime

4

d-dim. quantum field theory⇆

 
surface
t = 0

subregion  
ASA = − trρA log ρA, ρA = trĀρ

=

SHEE (A) = min
γA

Area(γA)
4GN

Ryu-Takayanagi formula

[Maldacena]

[Ryu-Takayanagi]

Can we really see EPR pairs across ? 
How does the geometry arise from a wave function?

γA

γA

geometry quantum information
(CFT)

🤔 Beyond AdS (hyperbolic) / CFT (critical)? cf. [Freedman-Headrick]
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Tensor networks as toy models of holography

5

STN (A) ≲ min
γA

(# bond cut by γA) × log χ

• Tensor networks (=variational wave function) provide a 
qualitative picture [Swingle]

～RT formula?

Multi-scale entanglement renormalization ansatz  
(MERA) [Vidal]

• Some proposals try to mimic holography (esp. RT formula)

Holographic state  
 [Pastawski et al.]

Random TN with large bond dim. 
[Hayden et al.] 

[Qi-Yang][Apel et al.]

CONS: Lack of expressivity; TN state ≠ conformally invariant

|Ψ⟩ = ( ⊗⟨x,y⟩ ⟨MES |xy ) ( ⊗x Urandom |0x⟩)

γA
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Entanglement distillation in holographic tensor networks

6

• A holographic state (or isometric tensor networks in general) 
is known to geometrize entanglement distillation

A A

Ac Ac

(Similar work: [Bao-Penington-Sorce-Wall], [Lin-Sun-Sun])
[Pastawski et al.]

= extracting  bits of EPR pairs from the stateSA

• Removing tensors, we obtain EPR pairs across the minimal 
surface ∵ SA(V |Ψ⟩) = SA( |Ψ⟩)

i j =
δij

2
| i⟩ | j⟩

= isometry

=

e.g.



/36

Entanglement distillation in holographic tensor networks

7

• A holographic state (or isometric tensor networks in general) 
is known to geometrize entanglement distillation

A A

Ac Ac

(Similar work: [Bao-Penington-Sorce-Wall], [Lin-Sun-Sun])
[Pastawski et al.]

= extracting  bits of EPR pairs from the stateSA

• Removing tensors, we obtain EPR pairs across the minimal 
surface ∵ SA(V |Ψ⟩) = SA( |Ψ⟩)

i j =
δij

2
| i⟩ | j⟩

= isometry

=

e.g.

So far this manipulation is limited to isometric TNs. 

Geometrization of entanglement distillation in other types of TNs? 
➜ Clarify the operational role of internal d.o.f. after optimization!
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Entanglement distillation in tensor networks

8

The important aspect for entanglement distillation is 

1. Conservation of entanglement (entropy) 
✔︎ Reduced transition matrix instead of reduced density 
matrix 

2. Extracting strongly entangled pairs 
✔︎ Nontrivial for non-isometic TNs but can be 
systematically studied
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Entanglement distillation in tensor networks

9

The important aspect for entanglement distillation is 

1. Conservation of entanglement (entropy) 
✔︎ Reduced transition matrix instead of reduced density 
matrix 

2. Extracting strongly entangled pairs 
✔︎ Nontrivial for non-isometic TNs but can be 
systematically studied
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Multi-scale entanglement renormalization ansatz 
(MERA)

10

• MERA has minimal bond cut surface(s)  

• What we want to see: A state on  = EPR pairs 

• Need to provide a method to properly define a state on a 
bond cut surface 

γ* = min(γA, γĀ)

γ*

γ

=

=
<latexit sha1_base64="2ZvN9JhqJ6vIjFuDSt8C8DWd2nc="></latexit>

C(A)
<latexit sha1_base64="o9c/i/FTd7ymK/HqG1k1ZW0A6Co="></latexit>

C(Ā)

A Ā

<latexit sha1_base64="mVfSNej3msmLnYbIWqIEDoZDn/I="></latexit>

�A := @C(A)
<latexit sha1_base64="HyIMYPN7dH0LiVtvKgpmGmZokcw="></latexit>

�Ā := @C(Ā)

[Vidal]

?

|Ψ⟩AĀ =

†
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Entanglement distillation in MERA

11

• Cut internal bonds across a bond cut surface   
instead of removing tensors from 
➡︎This defines a reduced transition matrix  on  

• To relate it with entanglement distillation, we consider foliations  
s.t. .

γ

ργ = trĀ ( |Ψ(γ)⟩⟨Φ(γ) |) ℋγ

{γ}

∂γ = ∂A

[TM-Manabe-Matsueda]

|Ψ(γ)⟩ =

⟨Φ(γ) | =

(a)

(b)
U1 U2

∈ ℋγ ⊗ ℋĀ

∈ ℋ*γ ⊗ ℋ*̄
A

(a)

(b)
U1 U2

≡ ⟨Ψ |Mγ

ργ = γ



/36

ρA =

(a) (b) (c)

ργ = γ ργA
=

γA

ργ′ 
=

γ′ 

(d)

ργĀ
=

γĀ

(e)

ρĀ =

(f)

12

Entanglement distillation in MERA

• Changing the location of foliations , we obtain a family of states 
on various bond cut surfaces (e.g.  for ,  for ) 

• Entanglement conservation w.r.t.  : , where  is 

the pseudo entropy [Nakata-Takayanagi et al.] 

γ

ρA γ = A ργ*
γ = γ*

∀γ S(ργ) = S(ρA) S(ργ)

S(ργ) = − trργ log ργ

[TM-Manabe-Matsueda]
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Entanglement distillation in MERA

• Changing the location of foliations , we obtain a family of states 
on various bond cut surfaces (e.g.  for ,  for ) 

• Entanglement conservation w.r.t.  : , where  is 

the pseudo entropy  

⬅︎ This is owing to the common eigenvalue distribution  
    between  and  ; the same entanglement spectrum! 

• Furthermore, when  is isometric, we can show  

 For isometric TNs, we obtain EPR pairs across the minimal 
bond cut surface (i.e. ) when 

γ

ρA γ = A ργ*
γ = γ*

∀γ S(ργ) = S(ρA) S(ργ)

S(ργ) = − trργ log ργ

ργ ρA

Mγ ⟨Φ(γ) | = ⟨Ψ(γ) |

⇒

ργ*
∝ 1 γ = γ*

[TM-Manabe-Matsueda]
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Entanglement distillation in MERA

• To go beyond the isometric case, we need to define a state from a 
reduced transition matrix. 

   We use the purification technique (a.k.a. channel-state duality) 

, 

   where  and . 

This will be regarded as a geometrically distilled state up to  by TN. 

Now we can make a quantitative comparison w.r.t. EPR pairs! 

➡︎ Trace distance from the EPR pair: 

|ρ1/2
γ ⟩ ≡ 𝒩γ dim ℋγ(ρ1/2

γ ⊗ 1) |EPRγ⟩

𝒩γ = [tr(ρ† 1/2
γ ρ1/2

γ )]
−1/2

|EPRγ⟩ = (dim ℋγ)−1/2
dim ℋγ

∑
i=1

| i⟩ ⊗ | i⟩

γ

Dγ ≡ 1 − ⟨EPRγ |ρ1/2
γ ⟩

2

[TM-Manabe-Matsueda]

(related to Rényi-1/2 entropy )⟨EPRγ |ρ1/2
γ ⟩

2
=

𝒩2
γ

dim ℋγ
eS1/2
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Random MERA

15

• Random TN is expected to reproduce RT formula in the 
large bond dimension limit [Hayden et al.] 

🤔 Why is the minimal bond cut surface is special?  
  (RT formula only tells us about entanglement entropy) 

🤔 The large bond dimension limit is essential?

=

=
(All tensors are Haar random)

γA

= Haar

|0⟩

†
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ρA =

(a) (b) (c)

ργ = γ ργA
=

γA

ργ′ 
=

γ′ 

(d)

ργĀ
=

γĀ

(e)

ρĀ =

(f)

Numerical results for random MERA

Choice of foliations:
[TM-Manabe-Matsueda]
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We compared the (averaged) trace distance  

between  and the EPR pair .

Dγ ≡ 1 − ⟨EPRγ |ρ1/2
γ ⟩

2

|ρ1/2
γ ⟩ |EPRγ⟩

L = 16L = 8, l = 4

l = 6

l = 8

bond dimension

isometric   
(incl. )

Mγ

γ = A

non-isometric  Mγ

 (  is minimal  
surface)

Mγ*
γ

Numerical results for random MERA
[TM-Manabe-Matsueda]
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Similarly consider pushing the foliation towards the minimal 
bond cut surface in matrix product states (MPS) 

Let us focus on the MPS in a mixed canonical form

Entanglement distillation in MPS
[TM-Manabe-Matsueda]
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Note: 

An MPS in a mixed canonical form is an analog of MERA 
(regarding its structure)

Entanglement distillation in MPS

†

σ
V′ W′ V W

Σ̂ ⟷

=

γA γĀ

σ

[TM-Manabe-Matsueda]
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We can consider the following foliations  

( distance from the minimal bond cut surface)

γ = γ(τ), τ = 0,1,2,3

τ ∼

Entanglement distillation in MPS
[TM-Manabe-Matsueda]
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The reduced transition matrix and the trace distance are

Entanglement distillation in MPS
[TM-Manabe-Matsueda]

The distillation by pushing the foliation equals removing 
redundant tensors. 

The entanglement spectrum  remains unchanged.σ

Dγ(τ) = 1 −
eS1/2

χτ+1
, τ = 0,1,2

Dγ(3) = Dγ(2)
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Summary

22

• By pushing towards the minimal surface , strongly entangled pairs 
are geometrically distilled in tensor networks while retaining the 
entanglement spectrum 

• It is essential to consider reduced transition matrices rather than a 
reduced density matrix 

• Our method works for non-holographic TNs: This suggests geometry 
of TN is intimately related to distillation for generic TNs  
➡︎ Holography beyond AdS/CFT 

Future directions 
• Operational interpretation of geometric distillation: local conf. trf., corner 

transfer matrix, modular flow? [Milsted-Vidal; Nishino-Okunishi; Okunishi-Seki] 
• Analytic “proof” beyond MPS using analytic MERA rep. [Evenbly-White] 

• CFT realization? Quant. adiabatic comp. (~annealing) with 

γ*

TT̄

Emergent geometry from distillation

[McGough-Mezei-Verlinde]

Email: moritaka-AT-post.kek.jp
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Example: Matrix Product States

24

Proposal: Holographic entanglement distillation 
1. Push the boundaries for each  and  towards the RT (min bond cut) 

surface (cf. surface/state correspondence [Miyaji-Takayanagi]) 
2. Define a new state on a pushed boundary (“foliation”) by removing the 

unreached part of TN and taking an inner product with the original TN 
3. To retain the amount of entanglement, take its square root

A Ā

[Manabe-Matsueda-TM wip]

|Ψ⟩ = ∑
{s}

Tr (As1
⋯As6) |s1⋯s6⟩

=

A Ā

γA

(Note: We will use the word RT surface and min. bond cut surface interchangeably)
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Example: Matrix Product States

25

Proposal: Holographic entanglement distillation 
1. Push the boundaries for each  and  towards the RT (min bond cut) 

surface (cf. surface/state correspondence [Miyaji-Takayanagi]) 
2. Define a new state on a pushed boundary (“foliation”) by removing the 

unreached part of TN and taking an inner product with the original TN 
3. To retain the amount of entanglement, take its square root

A Ā

[Manabe-Matsueda-TM wip]

γA

foliation 
at τ = 0

( : flow time)τ
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Example: Matrix Product States

26

Proposal: Holographic entanglement distillation 
1. Push the boundaries for each  and  towards the RT (min bond cut) 

surface (cf. surface/state correspondence [Miyaji-Takayanagi]) 
2. Define a new state on a pushed boundary (“foliation”) by removing the 

unreached part of TN and taking an inner product with the original TN 
3. To retain the amount of entanglement, take its square root

A Ā

[Manabe-Matsueda-TM wip]

foliation 
at τ = 0

= |Ψ⟩ (original state)

A Ā
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Example: Matrix Product States

27

Proposal: Holographic entanglement distillation 
1. Push the boundaries for each  and  towards the RT (min bond cut) 

surface (cf. surface/state correspondence [Miyaji-Takayanagi]) 
2. Define a new state on a pushed boundary (“foliation”) by removing the 

unreached part of TN and taking an inner product with the original TN 
3. To retain the amount of entanglement, take its square root

A Ā

[Manabe-Matsueda-TM wip]

γA
foliation at finite τ
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Example: Matrix Product States

28

Proposal: Holographic entanglement distillation 
1. Push the boundaries for each  and  towards the RT (min bond cut) 

surface (cf. surface/state correspondence [Miyaji-Takayanagi]) 
2. Define a new state on a pushed boundary (“foliation”) by removing the 

unreached part of TN and taking an inner product with the original TN 
3. To retain the amount of entanglement, take its square root

A Ā

[Manabe-Matsueda-TM wip]

foliation at finite τ

A Ā
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Example: Matrix Product States

29

Proposal: Holographic entanglement distillation 
1. Push the boundaries for each  and  towards the RT (min bond cut) 

surface (cf. surface/state correspondence [Miyaji-Takayanagi]) 
2. Define a new state on a pushed boundary (“foliation”) by removing the 

unreached part of TN and taking an inner product with the original TN 
3. To retain the amount of entanglement, take its square root

A Ā

[Manabe-Matsueda-TM wip]

γA
foliation at finite τ
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Example: Matrix Product States

30

Proposal: Holographic entanglement distillation 
1. Push the boundaries for each  and  towards the RT (min bond cut) 

surface (cf. surface/state correspondence [Miyaji-Takayanagi]) 
2. Define a new state on a pushed boundary (“foliation”) by removing the 

unreached part of TN and taking an inner product with the original TN 
3. To retain the amount of entanglement, take its square root

A Ā

[Manabe-Matsueda-TM wip]

γA
foliation at max τ
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Example: Matrix Product States

31

Proposal: Holographic entanglement distillation 
1. Push the boundaries for each  and  towards the RT (min bond cut) 

surface (cf. surface/state correspondence [Miyaji-Takayanagi]) 
2. Define a new state on a pushed boundary (“foliation”) by removing the 

unreached part of TN and taking an inner product with the original TN 
3. To retain the amount of entanglement,  

remove singular value matrix  at 

A Ā

σA γA

[Manabe-Matsueda-TM wip]

foliation at max τ

σ

A Ā
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Example: Matrix Product States

32

foliation at max τ

σ

A Ā

= = ===
(∵ mixed canonical form)

χ

∑
i

σi | i⟩A | i⟩Ā =
σ

When ES is like a plateau,

n

σn

n0

 can be considered as  
nearly uniform by taking 

, which well approximate 
the original state

σ

χ = n0
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Example: Matrix Product States

33

foliation at max τ

σ

A Ā

= = ===
(∵ mixed canonical form)

χ

∑
i

σi | i⟩A | i⟩Ā =
σ

n0
n

σn

If the ES is like the left figure, 
 cannot be uniform although 

 gives a good approx. 
(We try to approx. the state by 
geometry not with each tensors 
as much as possible)

σ
χ = n0
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Example: Matrix Product States

34

foliation at max τ

= = === (∵ mixed canonical form)

=
1
dA

χ

∑
i

| i⟩A | i⟩Ā

Maximally entangled state is distilled!  
(  for exact-MPS state, e.g. VBS)χ ∼ eSA

1
dA

1
dA

A Ā

Flat ES (leading order in holography) 
~ iid [Bao et al. ’19]
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Example: Matrix Product States

35

foliation at max τ

σ

= = ==

σ− 1
2 +s σ− 1

2 −s

1
dA

=
=

1
dA

χ

∑
i

| i⟩A | i⟩Ā
1
dA

✓This is nothing but a distillation by bulk modular flow 
✓The amount of entanglement is not preserved; it maximizes EE 
✓This distillation is consistent with iid limit (inverse needs -ly many copies)∞

[Quintino, et al. ’19][Yoshida, et al. ’21] 

Another candidate for HED:
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Example 2: Random MERA

36

• The distribution of the real part of coefficients (wave function) 
in  (original state) and  (distilled one) for  and  : 

(larger: red, lower: blue, almost zero: white)

|Ψ⟩ |Ψ(τfin)⟩ ℋA ℋĀ

χ = 2

(Images are coarse-grained by 48×48 for visualization)

|Ψ⟩ |Ψ(τfin)⟩



/36

Example 2: Random MERA

37

χ = 4

(Images are coarse-grained by 48×48 for visualization)

|Ψ⟩ |Ψ(τfin)⟩(too scattered)

• The distribution of the real part of coefficients (wave function) 
in  (original state) and  (distilled one) for  and  : 

(larger: red, lower: blue, almost zero: white)

|Ψ⟩ |Ψ(τfin)⟩ ℋA ℋĀ
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Example 2: Random MERA

38

• The distribution of the real part of coefficients (wave function) 
in  (original state) and  (distilled one) for  and  : 

(larger: red, lower: blue, almost zero: white)

|Ψ⟩ |Ψ(τfin)⟩ ℋA ℋĀ

χ = 6

(Images are coarse-grained by 48×48 for visualization)

|Ψ(τfin)⟩
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Example 2: Random MERA

39

• The distribution of the real part of coefficients (wave function) 
in  (original state) and  (distilled one) for  and  : 

(larger: red, lower: blue, almost zero: white)

|Ψ⟩ |Ψ(τfin)⟩ ℋA ℋĀ

χ = 8

(Images are coarse-grained by 48×48 for visualization)

|Ψ(τfin)⟩
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Example 2: Random MERA

40

• The distribution of the real part of coefficients (wave function) 
in  (original state) and  (distilled one) for  and  : 

(larger: red, lower: blue, almost zero: white)

|Ψ⟩ |Ψ(τfin)⟩ ℋA ℋĀ

χ = 20

(Images are coarse-grained by 48×48 for visualization)

|Ψ(τfin)⟩
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Beyond MPS: MERA with pure BH analogy
• What’s important here: RT surface (min bond cut 

surface) in TN is NOT unique 
Why does this happen and can we see this in the AdS/CFT?

41

U V
Σ̂

✓The enclosed region by each boundary and each RT surface is isometric; beyond that 
(even in EW) is NOT isometric (in the direction from one boundary to the other) 

✓  region necessarily contains the top tensor 
✓By taking the infinite volume and continuum limit, two RT surfaces should get closer 

and each slope at boundary should becomes orthogonal; But the each RT surface is 
bounded by the location of the top tensor 

✓By smoothly changing the subregion, other possible candidates fail to give minimum

Σ̂

 Identifying this phenomenon must be extremely important 
as  includes all the information about singular valuesΣ̂
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Beyond MPS: MERA with pure BH analogy
• This picture quite resembles to the pure 

BH. An RT surface can continuously move 
from one side to the other without any 
obstructions (because the state is pure) 

• TN suggests  region can exists at the 
origin of the bulk even for pure AdS as a 
point-like region. 

Σ̂

42

Σ̂

Dashed: causal cone for A

A
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Beyond MPS: MERA with pure BH analogy

43

Σ̂

Dashed: causal cone for A

A

Σ̂
O(ϵ)

Σ̂

O(ϵ)

Σ̂
r = 0

cont. limit

This is very close to EWCS=EoP setup. 
The important differences are: 
・This exists even in the pure state 
・If you take sufficiently small 
subregion, the RT surface is get 
disconnected for minimization 
condition whereas  remains finiteΣ̂

Python’s lunch (region sandwiched by 
extremal surfaces) or entanglement 
shadow appear due to discretization
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Entanglement distillation (concentration)
Suppose we want to extract maximally entangled pairs from the following state:  

Expanding terms:  n+1 different coefficients. Regard them as n+1 different orthogonal states. 

Within each state, there are  basis. 

The probability to extract -th density matrix (via projective measurement ):  

Then the averaged # of EPRs (ebits) are 

  

(Stirling’s formula ) 

                    

                              The saddle point approx. for the blue part:  
                   

|Ψ⟩⊗n
AB = [cos θ |00⟩ + sin θ |11⟩]⊗n

AB

|00⋯00⟩, ⋯, |11⋯11⟩

(n
k)

k |ϕk⟩ =
(n

k)
∑
i=1

| i⟩ | i′￼⟩ pk = (n
k) cos2(n−k) θ sin2k θ

n

∑
k=0

pk log (n
k) =

n

∑
k=0

exp [log (n
k) + (n − k)log cos2 θ + k log sin2 θ] log (n

k)
log n! ∼ n log n − n ⇒ log (n

k) ∼ n log n − k log k − (n − k)log(n − k) = k log
n
k

+ (n − k)log
n

n − k

=
n

∑
k=0

exp [k log ( n
k

sin2 θ) + (n − k)log ( n
n − k

cos2 θ)] log (n
k)

k = n sin2 θ

∼ − n cos2 θ log cos2 θ − n sin2 θ log sin2 θ = nSA

44
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Entanglement distillation in holography
• In contrast, holography (or tensor network), we only have a single 
state. Then, why can one argue distillation? 

First, the distillation or modular flow is not state-independent. (TTbar 
might offer a state-independent (but Hamiltonian-dependent) 
construction.) 
Second, it has been argued that a holographic theory has a flat 
entanglement spectrum, i.e. , (to leading order). This is 
equivalent to preparing iid. [Bao, et al.] 
(In contrast, when we consider back reaction flat ES is false because 
gravitational Renyi entropy is affected by backreacting cosmic brane.) 

Finally, holographic toy models like HaPPY code, random TN have flat 
ES [Dong-Harlow-Marolf]. Thus it is convincing that they offer a 
complete distillation. In general, we expect quasi randomness or quasi 
perfectness (~approx. QEC); such cases might result decrease in the 
success prob. for distillation.

∂nSn = 0

45



/36

• So far this works for MPS,  
or more generally the state of the type  

• Q. Can we extend our analysis for MERA? 
A. At least we can make a guess! 

• The domain of dependence (  entanglement wedge) for each 
region corresponds to  and  for MERA

|ψ⟩ = (UA ⊗ VĀ)∑
α

σα |αα⟩AĀ

≠

U V

46

σ
U V

A Ā

σA

σ
U VU V

σ ⟺

Beyond MPS: MERA with pure BH analogy
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Beyond MPS: MERA with pure BH analogy

• The region  can appear because we take , not EW 

• RT surface is not unique in TN; 
Even within the pure state 2 RT surfaces 
seemingly does not match 

• But by smoothly changing the subregion, other possible 
candidates fail to give minimum

σ D(A), D(Ā)

47

U V

σ
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Beyond MPS: MERA with pure BH analogy
• This picture quite resembles to the pure BH. 

An RT surface can continuously move from 
one side to the other without any 
obstructions (because the state is pure) 

• But now, the pure BH region is very imp; it 
accounts for . Beyond that region, the 
channel from the boundary is no more 
isometry (unless tensors have special 
properties like perfect, dual-unitary, etc.) 

• TN suggests  region can exists at the origin 
of the bulk even for pure AdS (but maybe 
just because of sub-AdS breakdown)

σ

σ

48

σ

Dashed: causal cone for A

A



/36

Beyond MPS: MERA with pure BH analogy
• This is special to TN. Since the angle between 

the minimal bond cut surface and the boundary 
near the endpoint of the subregion is always 
bounded by one unit of the isometry. It means 
the every RT surface sharing a common 
endpoint looks locally the same near the point.

49

σ

Dashed: causal cone for A

A
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Beyond MPS: MERA with pure BH analogy
• Global coordinates? 
Coordinate trf (for a parameter : ):  

;    ; 

       ;            ;   

Geodesic in Poincare coordinates:  where  

 makes the all the slopes of those geodesics same but at the same time the 
slope becomes orthogonal to the boundary. Furthermore, for a finite , the slopes are 
different from each other. This is different from TN. 
But isn’t this natural from RG? Different lattice regularization leads different theory 
up to correction vanishing as . 
→Then, the sigma region becomes thinner and thinner.

∀α ∈ ℝ r = 0 ⇔ z2 − t2 = α2, x = 0

1 + r2 cos τ =
z2 + x2 − t2 + α2

2αz
1 + r2 sin τ =

t
z

−r cos θ =
z2 + x2 − t2 − α2

2αz
r sin θ =

x
z

z2 + (x − l0)2 = (l + l0)2 A : [−l, l + 2l0]

ϵ = 0
ϵ

ϵ → 0
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σ

Dashed: causal cone for A

A

Continuum limit

σ
O(ϵ)

σ
O(ϵ)

σ = causal cone − RT region
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Path integral approach to distillation in MERA
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• As we have discussed, modular flow works for a 
certain circumstance. In such a case, the (open 
boundary) MERA can be thought as a state prepared 
by Euclidean path integral on a semi-disc. 

• Then, the modular flow=HED 

• However, it is a bit different from 
ordinary BCFT as the boundary 
is (usually) not conformally invariant. 
The boundary state is given by many products of 
ancillae (thus spatially separable).

Path integral optimization-> Liouville action
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Random MERA: Renyi-2 entropy
• In general, Renyi-2 entropy of 
a TN state (blue) is less than 
the expected result from RT 
formula (green) 

• In the large bond dim limit, 
they are expected to coincide 

• The Renyi-2 entropy of 
holographically distilled state 
on  (orange) is close to the 
original one (blue) probably 
due to doubled singular value

γA
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Bond dim.

Renyi-2 entropy 
S2 = − log Trρ2

A
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Random MERA: Renyi-2 entropy
• In general, Renyi-2 entropy of 
a TN state (blue) is less than 
the expected result from RT 
formula (green) 

• In the large bond dim limit, 
they are expected to coincide 

• The Renyi-2 entropy of 
holographically distilled state 
on  (orange) is close to the 
original one (blue) probably 
due to doubled singular value

γA
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