KEK理論センター研究会 「熱場の量子論とその応用」 2020/Aug./26

ヤンミルズ理論における非等方有限系の非等方圧力

Masakiyo Kitazawa (Osaka U.) with S. Mogliacci, I. Kolbe, W.A. Horowitz

MK, Mogliacci, Kolbe, Horowitz, Phys.Rev.D 99 (2019) 094507 [arXiv:1904.00241[hep-lat]]

attractive force between two conductive plates

attractive force between two conductive plates

attractive force between two conductive plates

x z y

Pressure Anisotropy @ T≠o

Pressure Anisotropy @ T≠o

MK, Mogliacci, Kolbe, Horowitz, PRD(2019)

Free scalar field $\Box L_2 = L_3 = \infty$ \Box Periodic BC Mogliacci+, 1807.07871

Lattice result

Periodic BC
Only t→0 limit
Error: stat.+sys.

Medium near T_c is remarkably insensitive to finite size!

Thermodynamics on the Lattice

Various Methods

□ Integral, differential, moving frame, non-equilibrium, ... □ rely on thermodynamic relations valid in V→∞ $P = \frac{T}{V} \ln Z$ $sT = \varepsilon + P$ Not applicable to anisotropic systems

Thermodynamics on the Lattice

Various Methods

□ Integral, differential, moving frame, non-equilibrium, ... □ rely on thermodynamic relations valid in V→∞ $P = \frac{T}{V} \ln Z$ $sT = \varepsilon + P$ Not applicable to anisotropic systems

UWe employ **Gradient Flow Method** $\varepsilon = \langle T_{00} \rangle$ $P = \langle T_{11} \rangle$ **Components of EMT are directly accessible!**

Yang-Mills Gradient Flow

diffusion equation in 4-dim space
diffusion distance d ~ $\sqrt{8t}$ "continuous" cooling/smearing
No UV divergence at t>0

Small Flow-Time Expansion

Luescher, Weisz, 2011 Suzuki, 2013

 $\tilde{\mathcal{O}}(t,x) \xrightarrow[t \to 0]{} \sum_{i \to 0} \sum_{i} c_i(t) \mathcal{O}_i^R(x)$

an operator at t>0

*****t

 $\tilde{\mathcal{O}}(t,x)$

t→0 limit

remormalized operators of original theory

Constructing EMT

Suzuki, 2013

$$U_{\mu\nu}(t,x) = \alpha_U(t) \left[T^R_{\mu\nu}(x) - \frac{1}{4} \delta_{\mu\nu} T^R_{\rho\rho}(x) \right] + \mathcal{O}(t)$$
$$E(t,x) = \langle E(t,x) \rangle + \alpha_E(t) T^R_{\rho\rho}(x) + \mathcal{O}(t)$$
vacuum subtr.

Remormalized EMT

$$T^{R}_{\mu\nu}(x) = \lim_{t \to 0} \left[c_1(t) U_{\mu\nu}(t, x) + \delta_{\mu\nu} c_2(t) E(t, x)_{\text{subt.}} \right]$$

Perturbative coefficient: Suzuki (2013); Makino, Suzuki (2014); Harlander+ (2018); Iritani, MK, Suzuki, Takaura (2019)

Perturbative Coefficients

Choice of the scale of g²

 $c_1(t) = c_1\left(g^2(\mu(t))\right)$

Previous: $\mu_d(t) = 1/\sqrt{8t}$ Improved: $\mu_0(t) = 1/\sqrt{2e^{\gamma_E}t}$

Harlander+ (2018)

t \rightarrow 0 Extrapolation: ε +p

N²LO (2-loop)

Iritani, MK, Suzuki, Takaura, PTEP 2019

□ Stable t→0 extrapolation with higher order coeff.
 □ Systematic error: fit range, µ₀ or µ₀, uncertaintyof Λ (±3%)
 □ Extrapolation func: linear, higher order term in c₁ (~g⁶)

Effect of Higher-Order Coeffs.

Systematic error: μ_0 or μ_d , Λ , t $\rightarrow 0$ function, fit range

More stable extrapolation with higher order $c_1 \& c_2$ (pure gauge)

Numerical Setup

SU(3) YM theoryWilson gauge action

 $N_t = 16, 12$ $N_z/N_t = 6$ $2000 \sim 4000$ confs.
Even N_x

No Continuum extrap.

Same Spatial volume

- 12X72²X12 ~ 16X96²X16
- 18x72²x12 ~ 24x96²x16

T/T_c	β	N_z	N_{τ}	N_x	$N_{\rm vac}$
1.12	6.418	72	12	12, 14, 16, 18	64
	6.631	96	16	16, 18, 20, 22, 24	96
1.40	6.582	72	12	12, 14, 16, 18	64
	6.800	96	16	16, 18, 20, 22, 24	128
1.68	6.719	72	12	12, 14, 16, 18, 24	64
	6.719	96	12	14, 18	64
	6.941	96	16	16,18,20,22,24	- 96
2.10	6.891	72	12	12, 14, 16, 18, 24	72
	7.117	96	16	16, 18, 20, 22, 24	128
2.69	7.086	72	12	12, 14, 16, 18	-
$\simeq 8.1$	8.0	72	12	12, 14, 16, 18	-
$\simeq 25$	9.0	72	12	12, 14, 16, 18	-

Simulations on OCTOPUS/Reedbush

Small-t Extrapolation $T/T_c = 1.68$

•
$$P_x$$
, • P_z , $L_1T = 3/2$
• P_x , • P_z , $L_1T = 9/8$
• P_x , • P_z , $L_1T = 1$

Filled: N_t=16 / Open: N_t=12

Small-t extrapolation

- Solid: N_t=16, Range-1
- Dotted: N_t=16, Range-2,3
- Dashed: N_t=12, Range-1

□ Stable small-t extrapolation □ No N_t dependence within statistics for $L_xT=1$, 1.5

Small-t Extrapolation $T/T_c = 1.68$

•
$$P_x$$
, • P_z , $L_1T = 3/2$
• P_x , • P_z , $L_1T = 9/8$
• P_x , • P_z , $L_1T = 1$

Filled: N_t=16 / Open: N_t=12

Small-t extrapolation

- Solid: N_t=16, Range-1
- Dotted: N_t=16, Range-2,3
- Dashed: N_t=12, Range-1

□ Stable small-t extrapolation □ No N_t dependence within statistics for $L_xT=1$, 1.5

Pressure Anisotropy @ T≠o

MK, Mogliacci, Kolbe, Horowitz, PRD(2019)

Free scalar field $\Box L_2 = L_3 = \infty$ \Box Periodic BC Mogliacci+, 1807.07871

Lattice result

□ Periodic BC
□ Only t→0 limit
□ Error: stat.+sys.

Medium near T_c is remarkably insensitive to finite size!

Pressure Anisotropy @ T≠o

MK, Mogliacci, Kolbe, Horowitz, PRD(2019)

Free scalar field $\Box L_2 = L_3 = \infty$ \Box Periodic BC Mogliacci+, 1807.07871

Lattice result

Periodic BC
Only t→0 limit
Error: stat.+sys.

Medium near T_c is remarkably insensitive to finite size!

HigherT

High-T limit: massless free gluons How does the anisotropy approach this limit?

Difficulties

□ Vacuum subtraction requires large-volume simulations. □ Lattice spacing not available $\rightarrow c_1(t)$, $c_2(t)$ are not determined.

HigherT

High-T limit: massless free gluons How does the anisotropy approach this limit?

Difficulties

□ Vacuum subtraction requires large-volume simulations. □ Lattice spacing not available $\rightarrow c_1(t)$, $c_2(t)$ are not determined.

We study

$$\frac{P_x + \delta}{P_z + \delta}$$

$$\delta = -\frac{1}{4} \sum_{\mu} T^{\rm E}_{\mu\mu}$$

No vacuum subtr. nor Suzuki coeffs. necessary!

 $\underline{P_x + \delta}$ $\overline{P_z + \delta}$

 $T/T_c \cong 8.1 (\beta = 8.0) / T/T_c \cong 25 (\beta = 9.0)$

Ratio approaches the asymptotic value.
 But, large deviation exists even at T/T_c~25.

Summary

-0.5

= 16

 $T/T_{c} = 1.68$

 $T/T_{c} = 2.10$

 $T/T_{c} = 1.12$

 $T/T_{c} = 1.40$

= 2.10

2.0

 $N_t = 12$

1.8

m/T=0

m/T=4

m/T=6

First numerical simulation of anisotropic pressure in SU(3) YM with periodic BC. 0.0

Medium at $1.4 < T/T_c < 2.1$ is remarkably free boson insensitive to the existence of boundary.

Future

Anti-periodic / Dirichlet BCs BC for two directions, magnetic field, below T_c, ...

And, many other problems related to EMT!!

Tips for Presentation

Install

OBS Studio <u>https://obsproject.com/</u>

OBS VirtualCam <u>https://github.com/CatxFish/obs-virtual-cam/</u>

Setup

tools – VirtualCam – Start

Chroma key composition: Need a green sheet behind you!

Zoom: Share Screen – Advanced – Content from 2nd camera

Extrapolations $t \rightarrow 0, a \rightarrow 0$ $\langle T_{\mu\nu}(t)\rangle_{\text{latt}} = \langle T_{\mu\nu}(t)\rangle_{\text{phys}} + C_{\mu\nu}t + \left[D_{\mu\nu}(t)\frac{a^2}{t}\right]$ O(t) terms in SFTE lattice discretization FlowQCD2016 **This Study** 🖉 Small t extrapol. 🕂 1 Continuum strong strong discretization discretization effect effect

energy densty / transverse P

Energy Density

Transverse Pressure P_z

Gradient Flow Method

Take Extrapolation (t,a) \rightarrow (0,0) $\langle T_{\mu\nu}(t) \rangle_{\text{latt}} = \langle T_{\mu\nu}(t) \rangle_{\text{phys}} + \begin{bmatrix} C_{\mu\nu}t \\ D_{\mu\nu}t \\ t \end{bmatrix} + \begin{bmatrix} 0 \\ t \end{bmatrix} + \cdots$ O(t) terms in SFTE lattice discretization

Two Special Cases with PBC $1/T \ll L_x = L_y = L_z$ $1/T = L_x, \ L_y = L_z$ $\frac{1}{T}$ L_y, L_z $\overline{L}_y, \ \underline{L}_z$ L_x $T_{11} = T_{22} = T_{33}$ $T_{44} = T_{11}, \ T_{22} = T_{33}$ In conformal ($\Sigma_{\mu}T_{\mu\mu}=0$) $\underline{p_1}$ - 1 $\frac{p_1}{-} = -1$ p_2 p_2

EMT on the Lattice: Conventional

 $\begin{aligned} & \text{Lattice EMT Operator}_{\text{Caracciolo+, 1990}} \\ & T_{\mu\nu} = Z_6 T_{\mu\nu}^{[6]} + Z_3 T_{\mu\nu}^{[3]} + Z_1 \left(T_{\mu\nu}^{[1]} - \left\langle T_{\mu\nu}^{[1]} \right\rangle \right) \\ & T_{\mu\nu}^{[6]} = (1 - \delta_{\mu\nu}) F_{\mu\rho}^a F_{\nu\rho}^a, \ T_{\mu\nu}^{[3]} = \delta_{\mu\nu} \left(F_{\mu\rho}^a F_{\nu\rho}^a - \frac{1}{4} F_{\rho\sigma}^a F_{\rho\sigma}^a \right), \ T_{\mu\nu}^{[1]} = \delta_{\mu\nu} F_{\rho\sigma}^a F_{\rho\sigma}^a \end{aligned}$

\Box Fit to thermodynamics: Z_3, Z_1

Shifted-boundary method: Z₆, Z₃ Giusti, Meyer, 2011; 2013; Giusti, Pepe, 2014~; Borsanyi+, 2018

Multi-level algorithm

effective in reducing statistical error of correlator

Meyer, 2007; Borsanyi, 2018; Astrakhantsev+, 2018