Complex Langevin study of an attractively interacting two-component Fermi gas in 1D with population imbalance

Shoichiro Tsutsui

(RIKEN Nishina Center for Accelerator-Based Science)
In collaboration with
Takahiro M. Doi (RCNP Osaka Univ.)
Hiroyuki Tajima (Kochi Univ.)

Complex Langevin study of an attractively interacting two-component Fermi gas in 1D with population imbalance

My research interest : QCD at finite density

Complex Langevin study of an attractively interacting two-component Fermi gas in 1D with population imbalance

My research interest : QCD at finite density

Common feature: sign problem

Common feature: sign problem

- What is the sign problem ?
- Sign problem in cold atom (and QCD)
- Complex Langevin (theory and application)

Sign problem: an intuitive picture

Numerical evaluation of highly oscillatory integrals is difficult

Sign problem: precise statement

Monte Carlo evaluation of highly oscillatory integrals is difficult

Monte Carlo integration

$P(x) \propto e^{-S(x)} \begin{array}{ll} & \text { is viewed as a probability density } \\ \text { function if } S(x) \in \mathbb{R}\end{array}$

Monte Carlo integration for complex $\mathrm{P}(\mathrm{x})$

Non positive semi-definite
$\frac{\int d x O(x) P(x)}{\int d x P(x)}$
$P(x) \propto e^{-S(x)}$ is not viewed as a probability density function if $S(x) \in \mathbb{C}$

Monte Carlo integration for complex $\mathrm{P}(\mathrm{x})$

$\frac{\int d x O(x) P(x) / \int d x|P(x)|}{\int d x P(x) / \int d x|P(x)|}$

Monte Carlo integration for complex $\mathrm{P}(\mathrm{x})$

$$
\frac{\int d x O(x) e^{i \theta(x)}|P(x)| / \int d x|P(x)|}{\int d x e^{i \theta(x)}|P(x)| / \int d x|P(x)|}
$$

This procedure is known as reweighting.

Monte Carlo integration for complex $\mathrm{P}(\mathrm{x})$

Positive semi-definite

$$
\frac{\int d x O(x) e^{i \theta(x)}|P(x)| / \int d x|P(x)|}{\int d x e^{i \theta(x)}|P(x)| / \int d x|P(x)|}
$$

Evaluate the numerator and denominator separately

Sign problem: more precise statement

$$
\frac{\int d x e^{i \theta(x)}|P(x)|}{\int d x|P(x)|}
$$

Signal-to-noise ratio is exponentially small

Sign problem in ultracold Fermi gas

Grand partition function

$$
Z=\int\left(\prod_{\sigma} \mathcal{D} \bar{\psi}_{\sigma} \mathcal{D} \psi_{\sigma}\right) e^{-\int d \tau d^{d} x\left(\sum_{\sigma} \bar{\psi}_{\sigma} G_{\sigma}^{-1} \psi_{\sigma}-g \bar{\psi}_{\uparrow} \bar{\psi}_{\downarrow} \psi_{\downarrow} \psi_{\uparrow}\right)}
$$

Sign problem in ultracold Fermi gas

Grand partition function

$$
Z=\int \mathcal{D} \phi\left(\prod_{\sigma} \mathcal{D} \bar{\psi}_{\sigma} \mathcal{D} \psi_{\sigma}\right) e^{-\int d \tau d^{d} x\left(\sum_{\sigma} \bar{\psi}_{\sigma}\left(G_{\sigma}^{-1}-\sqrt{g} \phi\right) \psi_{\sigma}+\frac{\phi^{2}}{2}\right)}
$$

Sign problem in ultracold Fermi gas

Grand partition function
$Z=\int \mathcal{D} \phi \operatorname{det}\left(G_{\uparrow}^{-1}-\sqrt{g} \phi\right) \operatorname{det}\left(G_{\downarrow}^{-1}-\sqrt{g} \phi\right) e^{-\int d \tau d^{d} x \frac{\phi^{2}}{2}}$
Non positive semi-definite

Except for $\uparrow=\downarrow$

$$
\begin{equation*}
\operatorname{det}\left(G_{\uparrow}^{-1}-\sqrt{g} \phi\right) \operatorname{det}\left(G_{\downarrow}^{-1}-\sqrt{g} \phi\right)=\operatorname{det}\left(G^{-1}-\sqrt{g} \phi\right)^{2} \geq 0 \tag{16}
\end{equation*}
$$

Sign problem in other systems

$$
Z=\int \mathcal{D} \phi \operatorname{det} M(\phi) e^{-S(\phi)}
$$

Fermion determinant is non positive semi-definite when

- Even species of fermions with imbalance $(\uparrow \neq \downarrow)$
- Odd species of fermions
- Repulsive interaction

Related topics:
polaron, FFLO, High-Tc superconductor, Effimov effect, bose-fermi mixture, ...

Sign problem in QCD

$$
Z=\int \mathcal{D} U \operatorname{det}\left(\gamma^{\mu} D_{\mu}-m-\mu \gamma^{0}\right) e^{-S(U)}
$$

Fermion determinant is non positive semi-definite when

- Chemical potential is nonzero

Complex Langevin

$$
\frac{d \phi}{d t}=-\frac{\partial(S(\phi)-\log \operatorname{det} M(\phi))}{\partial \phi}+\eta
$$

Complex Langevin

$$
\frac{d \phi}{d t}=-\frac{\partial S_{\mathrm{eff}}(\phi)}{\partial \phi}+\eta
$$

Parisi, Phys. Lett. 131B (1983) 393, Klauder PRA 29 (1984) 2036

Complex Langevin

$$
\frac{d \phi}{d t}=-\frac{\partial S_{\mathrm{eff}}(\phi)}{\partial \phi}+\eta
$$

Reach equilibrium

$$
P_{\mathrm{eq}}\left(\phi_{\mathrm{R}}, \phi_{\mathrm{I}}\right)
$$

Justification of complex Langevin

If $P_{\text {eq }}$ or $\frac{\partial S_{\text {eff }}}{\partial \phi}$ has "good" properties,
$\int \mathcal{D} \phi_{\mathrm{R}} \mathcal{D} \phi_{\mathrm{I}} O\left(\phi_{\mathrm{R}}+i \phi_{\mathrm{I}}\right) P_{\mathrm{eq}}\left(\phi_{\mathrm{R}}, \phi_{\mathrm{I}}\right)=\frac{1}{Z} \int \mathcal{D} \phi O(\phi) e^{-S_{\text {eff }}(\phi)}$
Obtained by complex Langevin
Original path integral

Aarts, Seiler, Stamatescu, PRD 81 (2010) 054608
Aarts, James, Seiler, Stamatescu, EPJ C71 (2011) 1756
Nagata, Nishimura, Shimasaki, PRD 92 (2015) 011501, PTEP 2016013 B01

Practically useful criterion

Distribution of the drift term should decay exponentially.

Nagata, Nishimura, Shimasaki, PRD 92 (2015) 011501, PTEP 2016013 B01

Application

Our setup:

- Two-component Fermion $(\sigma=\uparrow, \downarrow)$
- Attractive contact interaction $(g>0)$
- ID
$S=\int_{0}^{\beta} d \tau \int d x\left[\sum_{\sigma=\uparrow, \downarrow} \bar{\psi}_{\sigma}\left(\frac{\partial}{\partial \tau}-\frac{1}{2 m_{\sigma}} \frac{\partial^{2}}{\partial x^{2}}-\mu_{\sigma}\right) \psi_{\sigma}-g \bar{\psi}_{\uparrow} \bar{\psi}_{\downarrow} \psi_{\downarrow} \psi_{\uparrow}\right]$

Corresponding Hamiltonian: $\hat{H}=-\sum_{\sigma=\uparrow, \downarrow} \sum_{i} \frac{1}{2 m_{\sigma}} \frac{d^{2}}{d x_{i}^{2}}-\sum_{i<j} g \delta\left(x_{i}-x_{j}\right)$

Application

Our setup:

- Two-component Fermion $(\sigma=\uparrow, \downarrow)$
- Attractive contact interaction $(g>0)$
- 1D
- Lattice regularization

Application

Our setup:

- Two-component Fermion ($\sigma=\uparrow, \downarrow$)
- Attractive contact interaction $(g>0)$
-1D
- Lattice regularization

$a_{\mathrm{s}} \ll \lambda_{T}=\sqrt{2 \pi \beta}$ (thermal de Broglie length) 26

Application

Our setup:

- Two-component Fermion ($\sigma=\uparrow, \downarrow$)
- Attractive contact interaction $(g>0)$
- 1D
- Lattice regularization

Continuum limit: $a_{\mathrm{s}} \ll \lambda_{T}=\sqrt{2 \pi \beta} \rightarrow \infty$

Dimensionless parameters

$$
\begin{aligned}
& \beta \mu=\beta\left(\mu_{\uparrow}+\mu_{\downarrow}\right) / 2 \\
& \beta h=\beta\left(\mu_{\uparrow}-\mu_{\downarrow}\right) / 2 \\
& \lambda=\sqrt{g^{2} \beta} \\
& r=a_{\tau} / a_{\mathrm{s}}
\end{aligned}
$$

We set* $m_{\uparrow}=m_{\downarrow}=1$

What is expected ?

What is expected?

Poralon \leftarrow Today's topic

https://physics.aps.org/articles/v9/86

Orso, PRL 98 (2007) 070402

Complex Langevin works !

Extracting the polaron energy

$$
\begin{aligned}
G(\tau) & =\langle 0| \psi_{\downarrow}(\tau) \psi_{\downarrow}{ }^{\dagger}(0)|0\rangle \\
& =\langle 0| \mathrm{e}^{\hat{H} \tau} \psi_{\downarrow}(0) \mathrm{e}^{-\hat{H} \tau} \psi_{\downarrow}^{\dagger}(0)|0\rangle \\
& =\langle 0| \psi_{\downarrow}(0) \mathrm{e}^{-\hat{H} \tau} \psi_{\downarrow}^{\dagger}(0)|0\rangle \\
& =\sum_{n}\langle 0| \psi_{\downarrow}(0) \mathrm{e}^{-\hat{H} \tau}|n\rangle\langle n| \psi_{\downarrow}^{\dagger}(0)|0\rangle \\
& =\sum_{n} A_{n} \mathrm{e}^{-E_{n} \tau} \\
& \rightarrow A_{0} \mathrm{e}^{-E_{0} \tau}
\end{aligned}
$$

Dispersion relation of polaron

Fitting function: $E_{p}=\frac{p^{2}}{2 m_{\downarrow}^{*}}+U-r \mu_{\downarrow}$

Dispersion relation of polaron

Fitting function: $E_{p}=\frac{p^{2}}{2 m_{\downarrow}^{*}}+U-r \mu_{\downarrow}$

What about T-dependence?

TMA = T-matrix approach (self-consistent diagrammatic calc.)
CL = Complex Langevin

- TMA agrees with TBA in this temperature region.
- Lattice artifact may not be negligible in strong coupling regime.

Summary

-What is the sign problem ?

- Exponentially small signal-to-noise ratio in Monte Carlo simulations
- Sign problem in cold atom
- Non positive definite fermion determinant causes the sign problem.
- Complex Langevin (theory and application)
- In our setup (1D, attractive, $\beta h \neq 0$), complex Langevin is reliable.
- We obtain polaron energy at $T \neq 0$
- Consistent with TBA

Appendix

$N_{\downarrow} / N_{\uparrow}$

Flow of the drift term

Two point function

One particle energy

