有限温度系における 静的カラー電荷周辺のエネルギー応力分布

柳原 良亮 (阪大理)

For FlowQCD collaboration 北沢 正清、浅川 正之、初田 哲男

閉じ込め・非閉じ込め

これまでの研究成果 (真空の $Q\bar{Q}$ 系)

RY et al. (Flow QCD collab.), PLB789 (2019) 210.

RY and M. Kitazawa, PTEP2019 (2019) 093B02.

していたいです。 応力テンソル分布を通した クオーク間相互作用の 微視的伝達機構の研究

有限温度系へ

3

有限温度媒質中に置かれた 静的カラー電荷周辺の応力分布を SU(3)格子ゲージ理論に基づいて 数値的に解析することで、 プラズマの局所的な性質(力学的 情報)を調べる。

 T_c

本研究

Deconfined

T

熱力学 —有限温度媒質のバルクの性質—

Running coupling

局所的な性質へ:エネルギー運動量テンソル

Maxwell応力

$$T_{ij} = \epsilon_0 \left(E_i E_j - \frac{\delta_{ij}}{2} E^2 \right) + \frac{1}{\mu_0} \left(B_i B_j - \frac{\delta_{ij}}{2} B^2 \right)$$

格子上での測定

格子上での測定

セットアップ

- ✓ Quenched SU(3) Yang-Mills gauge theory
- ✓ Wilson gauge action
- ✓ Clover operator
- ✓ 4 temperatures above T_c
- \checkmark Multihit improvement in temporal links
- ✓ Simulation using OCTOPUS, Reedbush

β	Lattice spacing	Spatial size	Temporal size	T/T_c	# of statistics
6.600	0.0384 fm	48 ³	12		650
6.716	0.0329 fm	56 ³	14	1.44	840
6.819	0.0288 fm	64 ³	16		1,000
6.910	0.0256 fm	72 ³	18		1,000

球座標系

 $O_{\text{cont}} = O_{\text{lat}} + A_1(t)a^2 + A_1t + A_2t^2$

静的クォーク1体周辺の応力分布

静的クォーク1体周辺の応力分布

静的クォーク1体周辺の応力分布(温度依存性)

 $T_{\mu\mu} = T_{44} + T_{rr} + 2T_{\theta\theta}$

摂動計算との比較

エネルギー運動量テンソル (L.O.)

$$\begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$$

トレース (L.O.)

$$-\left\langle T_{\mu\mu}(r)\right\rangle_{Q} = \frac{11}{3} \frac{C_{A}C_{F}}{(4\pi)^{2}} \alpha_{s}^{2} \frac{(m_{D}r+1)^{2}}{r^{4}} e_{E}^{-2m_{D}r} + O(g^{6})$$

 $(T_{\mu\mu} = (\beta/2g)F_{\mu\nu}F_{\mu\nu})$

まとめと展望

データセット

T/T_c	N_s	N_{τ}	β	$a \; [\mathrm{fm}]$	$N_{\rm conf}$
1.20	40	10	6.336	0.0551	500
	48	12	6.467	0.0460	650
	56	14	6.581	0.0394	840
	64	16	6.682	0.0344	$1,\!000$
	72	18	6.771	0.0306	$1,\!000$
1.44	40	10	6.465	0.0461	500
	48	12	6.600	0.0384	650
	56	14	6.716	0.0329	840
	64	16	6.819	0.0288	$1,\!000$
	72	18	6.910	0.0256	$1,\!000$
2.00	40	10	6.712	0.0331	500
	48	12	6.853	0.0275	650
	56	14	6.973	0.0236	840
	64	16	7.079	0.0207	$1,\!000$
	72	18	7.173	0.0184	$1,\!000$
2.60	40	10	6.914	0.0255	500
	48	12	7.058	0.0212	650
	56	14	7.182	0.0182	840
	64	16	7.290	0.0159	$1,\!000$
	72	18	7.387	0.0141	1,000

格子補正

- ✓ 格子の離散化に由来する回転対称性の破れを補正(特に原点近傍で重要)
- ✓ 格子ゲージ理論に基づくtreeの計算と連続理論におけるtreeの計算から $\langle E(t, \vec{x}_n) \rangle_Q^{\text{imp}} = c(t, \vec{x}_n) \langle E(t, \vec{x}_n) \rangle_Q$ $\langle U_{\gamma\gamma'}(t, \vec{x}_n) \rangle_Q^{\text{imp}} = c(t, \vec{x}_n) \langle U_{\gamma\gamma'}(t, \vec{x}_n) \rangle_Q + \langle \delta U_{\gamma\gamma'}(t, \vec{x}_n) \rangle_Q$ ただし $\langle U_{\gamma\gamma'}(t, \vec{x}_n) \rangle_Q = \langle U_{\gamma\gamma'}(t, \vec{x}_n) \rangle_Q + \langle \delta U_{\gamma\gamma'}(t, \vec{x}_n) \rangle_Q$ であり、第1項は補正係数のかかるtreeの部分 $\langle U_{44}(t, \vec{x}_n) \rangle_Q = \langle U_{rr}(t, \vec{x}_n) \rangle_Q = -\langle U_{\theta\theta}(t, \vec{x}_n) \rangle_Q$ 一方の第2項は格子データから縮退部分を除いた残り

格子補正

格子補正による連続極限への影響

