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O(N) models
• They have played an important role in our understanding 

of second order phase transitions.


• N-component vector order parameter　　　　　　　　　　　
　N=1…Ising, N=2…XY, N=3…Heisenberg Model


• The playground of almost all the theoretical approaches 
…Exact solution (2d  Ising), Renormalization group（d=4-
ε, 2+ε expansion), conformal bootstrap,…



Common wisdom on the criticality 
of O(N) models (finite N case)

A nontrivial fixed point        with n relevant (unstable) directions 
branches from  G at       . (Wilson-Fisher FP, which describes second 
order phase transition, at d=4 and the tricritical FP         at d=3….)

GLW Hamiltonian

Below the critical dimension                           , the         term becomes 
relevant around the Gaussian FP (G).
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• At              , in generic dimensions 2<d<4, only Gaussian 
(G) and Wilson-Fisher (WF) fixed points (FPs) have been 
found.


• Exceptional case: At                       , there exists a line of 
FPs starting from G and it terminates at BMB (Bardeen-
Moshe-Bander) FP… A finite-N counterpart exists?? 

Common wisdom on the criticality of　
O(N) models at 　　　　　　　           　　

N = 1

N = 1

dn = 2 + 2/n



Bardeen-Moshe-Bander FP

• d=3, N=∞ there exists a line of trictritilal FPs (UV 
stable) that starts with Gaussian FP and ends with a 
singular FP that we call BMB FP. 

• The BMB FP has small field singularity and scale 
invariance breaks down at the BMB FP.
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Figure 10. The phase diagram of 3d large-N scalar field theories in the plane of the quartic (�) and
sextic (⌧) couplings from the Polchinski flow, with arrows indicating the flow towards the infrared. The UV
conformal window with asymptotic safety 0  ⌧  ⌧crit (blue line) is limited by the Gaussian (G) and the
Bardeen-Moshe-Bander (BMB) fixed points (full dots). Along the UV-line (� = 0), UV fixed points with
short-distance vacuum instabilities (⌧ < 0) or incomplete fixed points (⌧ > ⌧crit) are also indicated (dashed
blue lines). The Wilson-Fisher (WF) fixed point takes the role of an IR attractive sink for asymptotically
safe trajectories with � = 0 and �� > 0.

connect the Gaussian and the BMB fixed point in the UV with the Wilson-Fisher fixed point in
the IR are separatrices, and correspond to the full (blue) trajectories shown in Fig. 9.

On the other hand, trajectories running towards negative quartic coupling (0 < ��� ⌧ 1)
will enter a strongly coupled region where couplings approach an IR Landau pole. Along these
trajectories, and as a consequence of an increasingly negative quartic coupling � < 0, the the-
ory may also undergo a first order phase transition towards a phase with spontaneous symmetry
breaking. Using (37), we find once more that the onset of strong coupling is characterised by the
RG invariant characteristic scale (118). If additionally �(⇤) 6= 0, trajectories can no longer reach
the Wilson-Fisher fixed point in the IR. Instead, trajectories will run towards a low-energy regime
in the symmetric phase (� < 0) or in a phase with spontaneous symmetry breaking (� > 0).
The phase transition towards symmetry breaking may be first or second order, depending on the
values of �� and ⌧ at the high scale. Finally, we note that some of the trajectories terminating
at the Wilson-Fisher fixed point do not arise from an UV safe theory. These include trajectories
emanating from incomplete fixed points, fixed points with unstable vacua in the UV, or e↵ective
models whose UV limit terminates at a UV Landau pole, as indicated in Fig. 10.
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In practice, computing the flow of the potential Uk

requires several steps. First, the potential is defined by:
Uk(�) = �k[�] where � is a constant field. Then, the flow
of Uk(�) is obtained by acting with @t on both sides of
the above definition of Uk and by using Eq. (4). Finally,

�(2)
k in the right hand side of Eq. (4) is computed from

the LPA ansatz, Eq. (5).
It is very convenient for the following to make a change

of variables that simplifies considerably the study of the
large N limit. This change of variables is equivalent to
working with the Wilson-Polchinski flow instead of the
flow of �k, hereafter called the Wetterich flow. Following

Ref. [45], we define: Ṽ (%̃) = Ũ(⇢̃) +
⇣
�̃i � �̃i

⌘2
/2 with

%̃ = �̃i�̃i/2 = �̃2/2 and �̃i��̃i = ��̃iṼ 0(%̃) = ��̃iŨ 0(⇢̃).
It is convenient to rescale %̃ and Ṽ (%̃) as usual: %̄ =
%̃/N , V̄ = Ṽ /N . The FP equation for V̄ (%̄) thus reads
[8, 25, 45]

0 = 1� d V̄ + (d� 2)%̄V̄ 0 + 2%̄V̄ 02 � V̄ 0 � 2

N
%̄ V̄ 00 (6)

where the primes mean derivatives with respect to %̄.
Here again, the usual N ! 1 limit consists in assuming
that V̄ (%̄) is regular for all %̄ and thus in discarding the
last term in Eq. (6) because of its 1/N prefactor. In d = 3
andN = 1, there are infinitely many solutions to Eq. (6)
in which the last term has been discarded [1, 8, 9, 46].
They are given by the following implicit expression valid
for the physical solutions of interest here:

%̄± = 1 +
V̄ 0 � 5

2 � V̄ 0�
�
1� V̄ 0

�2 +
3
2 arcsin

p
V̄ 0 ±

p
2/⌧

�
V̄ 0

��1/2 �
1� V̄ 0

�5/2 (7)

where %̄+
�
V̄ 0� and %̄�

�
V̄ 0� correspond to the two

branches %̄ > 1 and %̄ < 1 respectively, and ⌧ is an in-
tegration constant. A detailed analysis of Eq. (7) shows
that (i) the gaussian FP G for which V̄ 0(%̄) = 0 is ob-
tained for ⌧ = 0, (ii) a well-defined solution V̄ (%̄) ex-
ists for all ⌧ 2 [0, ⌧ BMB = 32/(3⇡)2] which therefore
corresponds to the BMB line of FPs, denoted here by
A(⌧), with the BMB FP being the endpoint obtained for
⌧ = ⌧ BMB as in [1, 6–9], (iii) for ⌧ > ⌧ BMB the solutions
of Eq. (7) are not defined on the whole interval %̄ 2 [0,1[
[8], (iv) an isolated solution exists for

p
2/⌧ = 0 which

corresponds to the Wilson-Fisher FP associated with the
usual second order phase transition of the O(N = 1)
model (an analytic continuation is needed when V 0 < 0).
All the FPs corresponding to a value of ⌧ 2 [0, ⌧ BMB[
are twice unstable in the infrared and are tricritical. We
plot their potential in Fig. 1. One observes that, for
all ⌧ < ⌧BMB, the FP potentials V̄⌧ (%̄) along the BMB
line are regular for all values of the field. Approaching
⌧BMB, the FP potentials approach a limiting shape which
shows a singularity at a value %̄0 in its second derivative,
see Fig. 1 and a detailed description below (see also Fig.
1 of the Supplemental Material) [47]. Notice that in the
Wetterich version of the flow [36, 40], the potential of the
BMB FP shows a singularity at vanishing field [9].

FIG. 1. Potentials V̄ (%̄) of the tricritical FPs A(⌧) of the
BMB line (blue) together with the Wilson-Fisher FP (red).
The BMB FP is the endpoint of the BMB line (purple). All
these potentials are given by Eq. (7) (in the Wilson-Polchinski
version of the LPA flow). The gaussian FP G corresponds to
the horizontal line. The BMB FP potential shows a disconti-
nuity in its second derivative at %̄0.

Let us now look for the finite N origin of the BMB line
within our functional framework. Just as in perturbation
theory, we take the limit N ! 1 and d ! 3 at fixed
↵ = ✏N . Our aim is to show that to each FP A(⌧) with
⌧ 2 [0, ⌧ BMB] on the BMB line, there is one FP at finite
N , either A2(↵) or Ã3(↵), that converges to A(⌧) when
N ! 1. The problem is therefore to relate admissible
values of ⌧ , that is, values for which a FP on the BMB line
exists, to admissible values of ↵ where A2(↵) or Ã3(↵)
exist.

Within the LPA, the proof goes as follows. We assume
that at large N , the FP potentials can be expanded as:

V̄↵,N (%̄) = V̄↵,N=1(%̄) + V̄1,↵(%̄)/N +O(1/N2). (8)

We assume that V̄↵,N (%̄), V̄1,↵(%̄) and V̄↵,N=1(%̄) are reg-
ular functions of %̄. As such, V̄↵,N=1(%̄) must be the po-
tential of one the FPs on the BMB line. It must therefore
correspond to a solution of Eq. (7) with a definite value
of ⌧ 2 [0, ⌧ BMB]: V̄↵,N=1(%̄) = V̄⌧ (%̄). We therefore con-
clude that the regularity of V̄1,↵(%̄) together with Eqs.
(6) and (8) determines the relation between ⌧ and ↵.

It is particularly convenient to impose the analyticity
of V̄1,↵(%̄) at %̄ = 1 because all FPs of the BMB line show
an inflection point for this value of %̄ as can be seen on
Fig. 1. Generically, a nonanalytic logarithmic behavior
shows up at this point when substituting Eq. (8) into
Eq. (6). Requiring that its prefactor vanishes imposes
(see Section 3 of the Supplemental Material):

↵� 36⌧ + 96⌧2 = 0. (9)

This equation has two solutions ⌧1(↵) and ⌧2(↵) that
we choose such that ⌧1(↵)  ⌧2(↵) for all ↵, see Fig.
2 of the Supplemental Material. This implies that to
each value of ↵, that is, to each point on the hyperbola
d = 3�↵/N , correspond two FPs on the BMB line that,
as in perturbation theory, are A = A(⌧1(↵)) and Ã =
Ã(⌧2(↵)). According to Eq. (8), for any value of ↵, these
FPs must be the limits of two di↵erent FPs existing at

The second order derivative  
is discontinuous at 

D. F. Litim and M. J. Trott, PRD (2018)

WF FP

BMB FP

%̄ = %̄0
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• What occurs if we follow T2  from                           
to                           continuously as a function of 
(d,N)?

Summary of common wisdom and                     
a simple paradox (S. Yabunaka and B. 

Delamotte PRL 2017)

(d = 3�, N = 1)
(d = 2.8, N = 1)



Non perturbative 
renormalization group (NPRG) 
• Modern implementation of Wilson’s RG that takes the 
fluctuation into account step by step in lowering the cut-off 
wavenumber k,  in terms of wavenumber-dependent effective 
action                                                        �k

Microscopic Hamiltonian

Effective action (Free energy), 
where all the fluctuations are  

taken into account. 

H

k = ⇤k = ⇤� �⇤k = 0
……



NPRG equation
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where Ji · �i =
P2

i=1

´
x Ji (x) · �i (x) , and �Hk =P2

i=1 �i(x) · Rk(x � y) · �i(y). The idea underlying the
effective average action is to integrate in Zk only the
fluctuations of large wave-numbers (rapid modes) com-
pared to k while freezing the others (slow modes) and
to progressively decrease k. Rk(q2), which is the Fourier
transform of Rk(x), plays the role of separating rapid
and slow modes: It almost vanishes for |q| > k so that
the rapid modes are summed over and is large (of order
k2) below k so that the fluctuations of the slow modes
are frozen. We define as usual Wk[J i] = lnZk[J i]. Thus,
the order parameter 'j (x) at scale k is defined by

'i (x) = h�i (x)i =
�Wk [J i]

�J i (x)
(7)

The running effective average action �k ['i] is defined by
means of the modified Legendre transform by

�k ['i] = �Wk [J i] + Ji ·'i ��Hk ['i] (8)

where J i is defined such that Eq. (7) holds for fixed 'i.
From this definition one can show that

(
�k=⇤ ' H

�k=0 = �
, (9)

where the cutoff ⇤ is the inverse of the lattice spacing
a. Equations (9) imply that �k interpolates between the
hamiltonian of the system when no fluctuation has been
summed over, that is, when k = ⇤, and the Gibbs free
energy � when they have all been integrated, that is,
when k = 0. We define the variable t, called “RG time”,
by t = ln (k/⇤). The exact flow equation for �k reads [?
? ]:

@t�k['i] =
1

2
Tr

ˆ
x,y

@tRk(x�y)

✓
�2�k ['i]

�'↵
i (x) �'↵0

i0 (y)
+Rk (x� y) �i,i0�↵,↵0

◆�1

,

(10)
for ↵,↵0 = 1, 2, · · ·N and i, i0 = 1, 2.

IV. TRUNCATION OF THE NPRG EQUATION

It is generally not possible to solve exactly the above
flow equation and several approximations are employed in
practice. In this paper, we employ the so-called LPA (lo-
cal potential approximation) or LPA’. In these schemes,
�k is approximated by a series expansion in the gradient
of the field, truncated at its lowest non trivial order:

�k ['i] =

ˆ
ddx

✓
1

2
Zk

h
(@'1)

2 + (@'2)
2
i
+ Uk (⇢, ⌧)

◆
,

(11)
where the k-dependent potential Uk (⇢, ⌧) is defined as

⌦Uk (⇢, ⌧) = �k ['i] (12)

where 'i, i = 1, 2 are constant fields and ⌦ is the vol-
ume of the system. Zk is assumed to be independent of

the fields 'i in both LPA and LPA’. It is set to one in
LPA: ZLPA

k = 1, which leads to a vanishing anomalous
dimension: ⌘ = 0. In LPA’ calculations, the anomalous
dimension ⌘ is obtained from the flow of Zk since it can
be shown that at criticality:

Zk!0 ⇠
✓
k

⇤

◆�⌘

. (13)

We give a precise definition of Zk in Appendix A as well
as of ⌘. At criticality, the k-dependent effective action is
attracted towards the fixed point solution of the NPRG
equation once it is expressed in terms of the dimensionless
renormalized fields  ̃i and a dimensionless local potential
Ũk( ̃i). We thus define the dimensionless and renormal-
ized quantities:

 ̃i =
�
Zkk2�d

�1/2
 i

Ũk( ̃i) = k�dUk ( i) .
(14)

We expand the fixed point potential in the following form

Ũk

⇣
 ̃1,  ̃2

⌘
=

2n+4m14X

n,m=0

1

n!m!
ãn,m (⇢̃� ̃)n ⌧̃m, (15)

and solve the flow equation for the coupling constants
ãn,m. In the following calculations, we truncate the ex-
pansion at the 14-th order of  i for i = 1, 2.

V. RESULTS FOR FINITE BUT LARGE N

Here we explain the results for finite N as shown in
Fig. 1. C�, C�� and C��� exist in d0c (N) < d < 4,
d0c (N) < d < d00c (N) and 2 < d < d00c (N), respectively,
for sufficiently large N & 20. C�, C�� and C��� are
the multicritical fixed points with two, three and two
relevant directions. There occur the following saddle-
node bifurcations: In decreasing d with fixed N & 20,
firstly in d = d00c (N), C�� and C��� appear as a pair of
unstable and stable fixed points with respect to the RG
trajectory joining them. Secondly in d = d0c (N), C� and
C�� fixed points collide with each other and vanish.

In Fig. 1, we also plot the curve Nc (d) on which C�
and C�� fixed points collides with each other and van-
ish. This curve Nc (d) was obtained with another full-
funtional treatment of the local potential approximated
NPRG flow equation, which will be explained elsewhere.

For N & 20, we have confirmed that increasing the or-
der of truncation only slightly changes d0c (N) and d00c (N).
For smaller d and N , our field expansion method is not
very accurate because of poor convergence of the ex-
pansion, which have been often the case for NPRG cal-
culations. From this result, we cannot see the behav-
ior of d0c (N) and d00c (N) for smaller N and more ac-
curate numerical method would be necessary for that
purpose. For the moment, nevertheless, one can make
the following conjecture by simple extrapolation of the

NPRG equation (Wetterich, Phys. Lett. B, 1993) is 
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FIG. 2. The two curves Nc(d) and N ′
c(d) respectively defined

by T2 = C3 and C2 = C3 and the curve 3.6/(3 − d). Nc(d)
is calculated with the LPA (red circles) and at order 2 of the
derivative expansion (blue squares). We show a path joining
the point Q located at (d = 3−, N = 40) to the point at
N = ∞ and d = 2.8.

Let us first assume that for the O(N) models, the ex-
act RG flow equation of the Gibbs free energy Γ – also
called effective action – is continuous in d and N . Then,
assuming moreover that the FPs Γ∗ of these flows are
well-defined functions of d and N , they must also be
continuous functions of these parameters and can there-
fore be followed smoothly in the (d,N) plane. For con-
stant fields, the functional Γ∗[φ] reduces to the effec-
tive potential U∗(φ). If U∗ can be Taylor expanded:
U∗(φ) =

∑
m g∗m(φ2)m with φ = 〈ϕ〉, the smoothness of

Γ∗ as a function of d and N implies that of the g∗m which
can therefore be followed continuously along a given path
of the (d,N) plane. Notice that we do not need in the
following to expand U∗. However, the same continuity
argument can be used on the function U∗ itself rather
than on its couplings.

Let us now consider for instance the tricritical FP T2.
The paradox appears when we try to follow smoothly T2

from a point in the (d,N) plane where we know from
perturbation theory that it exists to a point where, ac-
cording to the common wisdom, it is believed not to exist.
We consider for instance the path shown in Fig. 2 start-
ing at Q in d = 3− and N = 40 and going to N = ∞
in d = 2.8. How can we solve the apparent contradiction
that T2 should evolve continuously and that it exists at
one end of the path, that is, in Q, and not at the other
end? The simplest solution is that either T2 disappears
before reaching N = ∞ or it becomes singular at N = ∞.
We shall see in the following that both these possibilities
are indeed realized depending on the path followed to
reach N = ∞. In particular, we shall see that there ex-
ists a line Nc(d) (or equivalently dc(N)), see Fig.2, such
that when T2 is followed along a path that crosses this
line – such as the path shown in Fig. 2 that starts in
Q – it collapses with another FP on the line Nc(d) and
disappears. This is why T2 is not found at N = ∞ for
d < 3. And the paradox is now clear: According to the

common wisdom, no known FP is available for collapsing
with T2. We must therefore conclude that the common
wisdom yields an incomplete picture and that there is a
new FP – that we indeed find and call C3 – with which T2

collapses on Nc(d). Part of the solution to the paradox
above is that C3 is nonperturbative: It cannot emerge
from G in any upper critical dimension because the sta-
bility of G in the O(N) models is well-known for all d and
N from perturbation theory. This is why C3 has never
been found previously. Some natural questions are then:
What is the stability of C3? Does it exist in d = 3 for
some values of N? Is it the only nonperturbative FP of
the O(N) models? Since, most probably, it does not ap-
pear alone, where does it appear and together with which
other FP? Does it exist in the large-N limit and why is
it not found in the usual 1/N expansion [2, 3, 12]? It is
the aim of this Letter to provide a first study of these
different questions.
The method of choice for studying FPs beyond per-

turbation theory is the nonperturbative (also called func-
tional) renormalization group (NPRG) which is the mod-
ern implementation of Wilson’s RG. It allows us to de-
vice accurate approximate RG flows. The NPRG is based
on the idea of integrating fluctuations step by step [17].
In its modern version, it is implemented on the Gibbs
free energy Γ [18–21]. A one-parameter family of mod-
els indexed by a scale k is thus defined such that only
the rapid fluctuations, with wavenumbers |q| > k, are
summed over in the partition function Zk. The decou-
pling of the slow modes (|q| < k) in Zk is performed by
adding to the original O(N)-invariant (ϕ2)2 hamiltonian
H a quadratic (mass-like) term which is nonvanishing
only for these modes:

Zk[J ] =

∫
Dϕi exp(−H[ϕ]−∆Hk[ϕ] + J ·ϕ). (1)

with ∆Hk[ϕ] =
1
2

∫
q Rk(q2)ϕi(q)ϕi(−q) – where, for in-

stance, Rk(q2) = αZ̄kq2(exp(q2/k2)− 1)−1 with α a
real parameter and Z̄k the field renormalization – and
J · ϕ =

∫
x Ji(x)ϕi(x). The k-dependent Gibbs free en-

ergy Γk[φ] is defined as the (slightly modified) Legendre
transform of logZk[J ]:

Γk[φ]+ logZk[J ] = J ·φ− 1

2

∫

q
Rk(q

2)φi(q)φi(−q). (2)

with
∫
q =

∫
ddq/(2π)d. The exact RG flow equation of

Γk reads [19]:

∂tΓk[φ] =
1

2
Tr[∂tRk(q

2)(Γ(2)
k [q,−q;φ] +Rk(q))

−1] (3)

where t = log(k/Λ), Tr stands for an integral over q

and a trace over group indices and Γ(2)
k [q,−q;φ] is the

matrix of the Fourier transforms of the second functional
derivatives of Γk[φ] with respect to φi(x) and φj(y).
For the systems we are interested in, it is impossible to

solve Eq. (3) exactly and we therefore have recourse to



Derivative expansion(DE2)
• It is impossible to solve the NPRG equation exactly and we 

have recourse to approximations, 

• Simpler approximations…LPA(η=0), LPA’ approximation

3

FIG. 3. Singular point S and the two linesNc(d) (red squares)
and N ′

c(d) (blue stars). Starting from P , the FP T2 is followed
along a clockwise (left) or anti-clockwise (right) closed path
surrounding S. On the clockwise path, T2 becomes C2 after
a full rotation. On the anti-clockwise path, T2 collides with
C3 on Nc(d) and disappears. It actually becomes complex-
valued and remains so all along the dashed path. On N ′

c(d)
it becomes real again but is now C2. The path joining Nc(d)
and N ′

c(d) at fixed N = 33 is also shown in panel (a).

approximations. The most appropriate nonperturbative
approximation consists in expanding Γk[φ] in powers of
∇φ [23–32]. At order two of the derivative expansion, Γk

reads:

Γk[φ] =

∫

x

(
1

2
Zk(ρ)(∇φi)

2 +
1

4
Yk(ρ)(φi∇φi)

2

+Uk(ρ) +O(∇4)

)
.

(4)

where ρ = φiφi/2. Within this approximation, all critical
exponents are accurately computed for all d and N . The
LPA’ is a simpler approximation consisting in setting in
Eq. (4): Yk(ρ) = 0 and Zk(ρ) = Z̄k, a field-independent
field renormalization. From Z̄k is derived the running
anomalous dimension ηt = −∂t log Z̄k that converges at
the FP to the anomalous dimension η. The LPA consists
in setting Z̄k = 1 which implies η = 0. The RG flow
is one-loop exact in the ε = 4 − d (or ε = 3 − d for
T2) expansion for both the LPA and LPA’ and is also
one-loop exact for the LPA’ for N > 1, in the ε′ = d −
2 expansion. Most importantly for what follows, even
within the LPA, the flow of the effective potential Uk

is exact at N = ∞. We give the flow of the effective
potential Uk for any N at the LPA in the Supplemental
Material.

We have numerically integrated the fixed point equa-
tion for the effective potential: ∂tŨ∗ = 0, Eq. (??), at
the LPA and LPA’. As expected, we find T2 for any N
emerging from G in d = 3−. For sufficiently small values
of N , typically N < 19, we find that we can follow this
FP down to d = 2 using the LPA’. For N > 19, we find
that by decreasing d at fixed N , T2 disappears in a di-
mension dc(N) by collapsing with a 3-unstable FP that
we call C3 as already explained above, see Figs. 2 and 3.
We find that the line Nc(d) is asymptotic to the d = 3
axis, see Fig.2, as expected for the disappearance of T2

just below d = 3 at large N . A very good fit at large N
of the Nc(d) curve is 3.6/(3− d), see Fig. 2.
We have checked that the picture above is quantita-

tively stable when we go from the LPA to the order two
of the derivative expansion, Eq. (4), see Fig. 2. This is
completely consistent with the fact that η is very small on
the curve Nc(d) for N sufficiently large and decreases at
largeN which makes the LPA flow of Uk exact atN = ∞.
For instance, for N = 40, we find dc(40) = 2.924 and in
this dimension, η = 1.7 10−3. Thus, although we have
no rigorous proof, we can safely claim that the existence
of C3 is doubtless and that the curve Nc(d) approaches
N = ∞ when d → 3. We show the T2 = C3 FP potential
shape on N = Nc(d) in the Supplemental Material. It is
a regular function of ρ at N = ∞, which is not the case
for the BMB FP, which shows a cusp.
Let us now follow C3 by increasing d. We choose for

instance N = 33 and we follow the path shown in Fig.
3.a starting at dc(N = 33) = 2.90. We find that C3

exists on this path up to d =3.09 which shows that a
nonperturbative FP can exist in d = 3. In d =3.09, it
collapses with a 2-unstable FP, that we call C2 and both
these FPS do not exist for d > 3.09. The FP C2 cannot
be T2 because T2 does not exist above d = 3. By changing
the value of N , we generate a line where C3 = C2 that
we call N ′

c(d), see Figs. 2 and 3.
We find two interesting features of the curve N ′

c(d).
First, the two curves Nc(d) and N ′

c(d) meet in a point,
that we call S, located at (d = 2.81, N = 19), see Figs.
2 and 3. This means that right at S: T2 = C3 = C2. We
also find that S is a singular point: If we follow smoothly
T2 around a closed loop containing S starting for instance
at P = (d = 2.94, N = 30), see Fig. 3, we do not come
back at T2. More precisely, starting from P and following
an anti-clockwise closed path as in Fig. 3.b, T2 collides on
the line Nc(d) with C3 and disappears. More precisely,
it becomes complex. On the contrary, following the same
path clockwise, T2 does not collide with any FP but be-
comes C2 after a full rotation around S. This is why we
have claimed above that the fate of T2 when N → ∞
depends on the path followed. From a purely mathemat-
ical point of view, the continuity argument for following
smoothly the FPs everywhere in the (d,N) plane and ex-
hibiting the double-valued structure of T2 and C2 makes
sense only after allowing the FPs to be complex-valued
(or, in a Taylor expansion, the g∗m to be complex). For
instance, let us again consider Fig. 3.b. We start at P
with T2 which is very close to G. Beyond the line Nc(d),
T2 becomes complex. It becomes real again when the
path crosses N ′

c(d) and it is then C2 which is far from G.
If we go on following the same path, C2 remains real all
the way but after the second full rotation, it is T2 again.
The second interesting feature of the curve N ′

c(d) is
that it also becomes vertical at large N while being this
time asymptotic to the d = 4 axis, see Fig. 2. We there-
fore conclude that most probably C3 exists at N = ∞
everywhere for d ∈]3, 4[ and C2 for d ∈]2, 4[. However,
we also find that for larger and larger N in d > 3, the
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T2 around a closed loop containing S starting for instance
at P = (d = 2.94, N = 30), see Fig. 3, we do not come
back at T2. More precisely, starting from P and following
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the line Nc(d) with C3 and disappears. More precisely,
it becomes complex. On the contrary, following the same
path clockwise, T2 does not collide with any FP but be-
comes C2 after a full rotation around S. This is why we
have claimed above that the fate of T2 when N → ∞
depends on the path followed. From a purely mathemat-
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where ρ = φiφi/2. Within this approximation, all critical
exponents are accurately computed for all d and N . The
LPA’ is a simpler approximation consisting in setting in
Eq. (4): Yk(ρ) = 0 and Zk(ρ) = Z̄k, a field-independent
field renormalization. From Z̄k is derived the running
anomalous dimension ηt = −∂t log Z̄k that converges at
the FP to the anomalous dimension η. The LPA consists
in setting Z̄k = 1 which implies η = 0. The RG flow
is one-loop exact in the ε = 4 − d (or ε = 3 − d for
T2) expansion for both the LPA and LPA’ and is also
one-loop exact for the LPA’ for N > 1, in the ε′ = d −
2 expansion. Most importantly for what follows, even
within the LPA, the flow of the effective potential Uk

is exact at N = ∞. We give the flow of the effective
potential Uk for any N at the LPA in the Supplemental
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the LPA and LPA’. As expected, we find T2 for any N
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of N , typically N < 19, we find that we can follow this
FP down to d = 2 using the LPA’. For N > 19, we find
that by decreasing d at fixed N , T2 disappears in a di-
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axis, see Fig.2, as expected for the disappearance of T2

just below d = 3 at large N . A very good fit at large N
of the Nc(d) curve is 3.6/(3− d), see Fig. 2.
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3.a starting at dc(N = 33) = 2.90. We find that C3

exists on this path up to d =3.09 which shows that a
nonperturbative FP can exist in d = 3. In d =3.09, it
collapses with a 2-unstable FP, that we call C2 and both
these FPS do not exist for d > 3.09. The FP C2 cannot
be T2 because T2 does not exist above d = 3. By changing
the value of N , we generate a line where C3 = C2 that
we call N ′

c(d), see Figs. 2 and 3.
We find two interesting features of the curve N ′

c(d).
First, the two curves Nc(d) and N ′

c(d) meet in a point,
that we call S, located at (d = 2.81, N = 19), see Figs.
2 and 3. This means that right at S: T2 = C3 = C2. We
also find that S is a singular point: If we follow smoothly
T2 around a closed loop containing S starting for instance
at P = (d = 2.94, N = 30), see Fig. 3, we do not come
back at T2. More precisely, starting from P and following
an anti-clockwise closed path as in Fig. 3.b, T2 collides on
the line Nc(d) with C3 and disappears. More precisely,
it becomes complex. On the contrary, following the same
path clockwise, T2 does not collide with any FP but be-
comes C2 after a full rotation around S. This is why we
have claimed above that the fate of T2 when N → ∞
depends on the path followed. From a purely mathemat-
ical point of view, the continuity argument for following
smoothly the FPs everywhere in the (d,N) plane and ex-
hibiting the double-valued structure of T2 and C2 makes
sense only after allowing the FPs to be complex-valued
(or, in a Taylor expansion, the g∗m to be complex). For
instance, let us again consider Fig. 3.b. We start at P
with T2 which is very close to G. Beyond the line Nc(d),
T2 becomes complex. It becomes real again when the
path crosses N ′

c(d) and it is then C2 which is far from G.
If we go on following the same path, C2 remains real all
the way but after the second full rotation, it is T2 again.
The second interesting feature of the curve N ′

c(d) is
that it also becomes vertical at large N while being this
time asymptotic to the d = 4 axis, see Fig. 2. We there-
fore conclude that most probably C3 exists at N = ∞
everywhere for d ∈]3, 4[ and C2 for d ∈]2, 4[. However,
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where ρ = φiφi/2. Within this approximation, all critical
exponents are accurately computed for all d and N . The
LPA’ is a simpler approximation consisting in setting in
Eq. (4): Yk(ρ) = 0 and Zk(ρ) = Z̄k, a field-independent
field renormalization. From Z̄k is derived the running
anomalous dimension ηt = −∂t log Z̄k that converges at
the FP to the anomalous dimension η. The LPA consists
in setting Z̄k = 1 which implies η = 0. The RG flow
is one-loop exact in the ε = 4 − d (or ε = 3 − d for
T2) expansion for both the LPA and LPA’ and is also
one-loop exact for the LPA’ for N > 1, in the ε′ = d −
2 expansion. Most importantly for what follows, even
within the LPA, the flow of the effective potential Uk

is exact at N = ∞. We give the flow of the effective
potential Uk for any N at the LPA in the Supplemental
Material.

We have numerically integrated the fixed point equa-
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the LPA and LPA’. As expected, we find T2 for any N
emerging from G in d = 3−. For sufficiently small values
of N , typically N < 19, we find that we can follow this
FP down to d = 2 using the LPA’. For N > 19, we find
that by decreasing d at fixed N , T2 disappears in a di-
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we call C3 as already explained above, see Figs. 2 and 3.
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axis, see Fig.2, as expected for the disappearance of T2

just below d = 3 at large N . A very good fit at large N
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a regular function of ρ at N = ∞, which is not the case
for the BMB FP, which shows a cusp.
Let us now follow C3 by increasing d. We choose for

instance N = 33 and we follow the path shown in Fig.
3.a starting at dc(N = 33) = 2.90. We find that C3

exists on this path up to d =3.09 which shows that a
nonperturbative FP can exist in d = 3. In d =3.09, it
collapses with a 2-unstable FP, that we call C2 and both
these FPS do not exist for d > 3.09. The FP C2 cannot
be T2 because T2 does not exist above d = 3. By changing
the value of N , we generate a line where C3 = C2 that
we call N ′

c(d), see Figs. 2 and 3.
We find two interesting features of the curve N ′

c(d).
First, the two curves Nc(d) and N ′

c(d) meet in a point,
that we call S, located at (d = 2.81, N = 19), see Figs.
2 and 3. This means that right at S: T2 = C3 = C2. We
also find that S is a singular point: If we follow smoothly
T2 around a closed loop containing S starting for instance
at P = (d = 2.94, N = 30), see Fig. 3, we do not come
back at T2. More precisely, starting from P and following
an anti-clockwise closed path as in Fig. 3.b, T2 collides on
the line Nc(d) with C3 and disappears. More precisely,
it becomes complex. On the contrary, following the same
path clockwise, T2 does not collide with any FP but be-
comes C2 after a full rotation around S. This is why we
have claimed above that the fate of T2 when N → ∞
depends on the path followed. From a purely mathemat-
ical point of view, the continuity argument for following
smoothly the FPs everywhere in the (d,N) plane and ex-
hibiting the double-valued structure of T2 and C2 makes
sense only after allowing the FPs to be complex-valued
(or, in a Taylor expansion, the g∗m to be complex). For
instance, let us again consider Fig. 3.b. We start at P
with T2 which is very close to G. Beyond the line Nc(d),
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c(d) and it is then C2 which is far from G.
If we go on following the same path, C2 remains real all
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time asymptotic to the d = 4 axis, see Fig. 2. We there-
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where ρ = φiφi/2. Within this approximation, all critical
exponents are accurately computed for all d and N . The
LPA’ is a simpler approximation consisting in setting in
Eq. (4): Yk(ρ) = 0 and Zk(ρ) = Z̄k, a field-independent
field renormalization. From Z̄k is derived the running
anomalous dimension ηt = −∂t log Z̄k that converges at
the FP to the anomalous dimension η. The LPA consists
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one-loop exact for the LPA’ for N > 1, in the ε′ = d −
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In practice, computing the flow of the potential Uk

requires several steps. First, the potential is defined by:
Uk(�) = �k[�] where � is a constant field. Then, the flow
of Uk(�) is obtained by acting with @t on both sides of
the above definition of Uk and by using Eq. (4). Finally,

�(2)
k in the right hand side of Eq. (4) is computed from

the LPA ansatz, Eq. (5).
It is very convenient for the following to make a change

of variables that simplifies considerably the study of the
large N limit. This change of variables is equivalent to
working with the Wilson-Polchinski flow instead of the
flow of �k, hereafter called the Wetterich flow. Following

Ref. [45], we define: Ṽ (%̃) = Ũ(⇢̃) +
⇣
�̃i � �̃i

⌘2
/2 with

%̃ = �̃i�̃i/2 = �̃2/2 and �̃i��̃i = ��̃iṼ 0(%̃) = ��̃iŨ 0(⇢̃).
It is convenient to rescale %̃ and Ṽ (%̃) as usual: %̄ =
%̃/N , V̄ = Ṽ /N . The FP equation for V̄ (%̄) thus reads
[8, 25, 45]

0 = 1� d V̄ + (d� 2)%̄V̄ 0 + 2%̄V̄ 02 � V̄ 0 � 2

N
%̄ V̄ 00 (6)

where the primes mean derivatives with respect to %̄.
Here again, the usual N ! 1 limit consists in assuming
that V̄ (%̄) is regular for all %̄ and thus in discarding the
last term in Eq. (6) because of its 1/N prefactor. In d = 3
andN = 1, there are infinitely many solutions to Eq. (6)
in which the last term has been discarded [1, 8, 9, 46].
They are given by the following implicit expression valid
for the physical solutions of interest here:
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where %̄+
�
V̄ 0� and %̄�

�
V̄ 0� correspond to the two

branches %̄ > 1 and %̄ < 1 respectively, and ⌧ is an in-
tegration constant. A detailed analysis of Eq. (7) shows
that (i) the gaussian FP G for which V̄ 0(%̄) = 0 is ob-
tained for ⌧ = 0, (ii) a well-defined solution V̄ (%̄) ex-
ists for all ⌧ 2 [0, ⌧ BMB = 32/(3⇡)2] which therefore
corresponds to the BMB line of FPs, denoted here by
A(⌧), with the BMB FP being the endpoint obtained for
⌧ = ⌧ BMB as in [1, 6–9], (iii) for ⌧ > ⌧ BMB the solutions
of Eq. (7) are not defined on the whole interval %̄ 2 [0,1[
[8], (iv) an isolated solution exists for

p
2/⌧ = 0 which

corresponds to the Wilson-Fisher FP associated with the
usual second order phase transition of the O(N = 1)
model (an analytic continuation is needed when V 0 < 0).
All the FPs corresponding to a value of ⌧ 2 [0, ⌧ BMB[
are twice unstable in the infrared and are tricritical. We
plot their potential in Fig. 1. One observes that, for
all ⌧ < ⌧BMB, the FP potentials V̄⌧ (%̄) along the BMB
line are regular for all values of the field. Approaching
⌧BMB, the FP potentials approach a limiting shape which
shows a singularity at a value %̄0 in its second derivative,
see Fig. 1 and a detailed description below (see also Fig.
1 of the Supplemental Material) [47]. Notice that in the
Wetterich version of the flow [36, 40], the potential of the
BMB FP shows a singularity at vanishing field [9].

FIG. 1. Potentials V̄ (%̄) of the tricritical FPs A(⌧) of the
BMB line (blue) together with the Wilson-Fisher FP (red).
The BMB FP is the endpoint of the BMB line (purple). All
these potentials are given by Eq. (7) (in the Wilson-Polchinski
version of the LPA flow). The gaussian FP G corresponds to
the horizontal line. The BMB FP potential shows a disconti-
nuity in its second derivative at %̄0.

Let us now look for the finite N origin of the BMB line
within our functional framework. Just as in perturbation
theory, we take the limit N ! 1 and d ! 3 at fixed
↵ = ✏N . Our aim is to show that to each FP A(⌧) with
⌧ 2 [0, ⌧ BMB] on the BMB line, there is one FP at finite
N , either A2(↵) or Ã3(↵), that converges to A(⌧) when
N ! 1. The problem is therefore to relate admissible
values of ⌧ , that is, values for which a FP on the BMB line
exists, to admissible values of ↵ where A2(↵) or Ã3(↵)
exist.

Within the LPA, the proof goes as follows. We assume
that at large N , the FP potentials can be expanded as:

V̄↵,N (%̄) = V̄↵,N=1(%̄) + V̄1,↵(%̄)/N +O(1/N2). (8)

We assume that V̄↵,N (%̄), V̄1,↵(%̄) and V̄↵,N=1(%̄) are reg-
ular functions of %̄. As such, V̄↵,N=1(%̄) must be the po-
tential of one the FPs on the BMB line. It must therefore
correspond to a solution of Eq. (7) with a definite value
of ⌧ 2 [0, ⌧ BMB]: V̄↵,N=1(%̄) = V̄⌧ (%̄). We therefore con-
clude that the regularity of V̄1,↵(%̄) together with Eqs.
(6) and (8) determines the relation between ⌧ and ↵.

It is particularly convenient to impose the analyticity
of V̄1,↵(%̄) at %̄ = 1 because all FPs of the BMB line show
an inflection point for this value of %̄ as can be seen on
Fig. 1. Generically, a nonanalytic logarithmic behavior
shows up at this point when substituting Eq. (8) into
Eq. (6). Requiring that its prefactor vanishes imposes
(see Section 3 of the Supplemental Material):

↵� 36⌧ + 96⌧2 = 0. (9)

This equation has two solutions ⌧1(↵) and ⌧2(↵) that
we choose such that ⌧1(↵)  ⌧2(↵) for all ↵, see Fig.
2 of the Supplemental Material. This implies that to
each value of ↵, that is, to each point on the hyperbola
d = 3�↵/N , correspond two FPs on the BMB line that,
as in perturbation theory, are A = A(⌧1(↵)) and Ã =
Ã(⌧2(↵)). According to Eq. (8), for any value of ↵, these
FPs must be the limits of two di↵erent FPs existing at
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⇣
�̃i � �̃i

⌘2
/2 with

%̃ = �̃i�̃i/2 = �̃2/2 and �̃i��̃i = ��̃iṼ 0(%̃) = ��̃iŨ 0(⇢̃).
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within our functional framework. Just as in perturbation
theory, we take the limit N ! 1 and d ! 3 at fixed
↵ = ✏N . Our aim is to show that to each FP A(⌧) with
⌧ 2 [0, ⌧ BMB] on the BMB line, there is one FP at finite
N , either A2(↵) or Ã3(↵), that converges to A(⌧) when
N ! 1. The problem is therefore to relate admissible
values of ⌧ , that is, values for which a FP on the BMB line
exists, to admissible values of ↵ where A2(↵) or Ã3(↵)
exist.

Within the LPA, the proof goes as follows. We assume
that at large N , the FP potentials can be expanded as:

V̄↵,N (%̄) = V̄↵,N=1(%̄) + V̄1,↵(%̄)/N +O(1/N2). (8)

We assume that V̄↵,N (%̄), V̄1,↵(%̄) and V̄↵,N=1(%̄) are reg-
ular functions of %̄. As such, V̄↵,N=1(%̄) must be the po-
tential of one the FPs on the BMB line. It must therefore
correspond to a solution of Eq. (7) with a definite value
of ⌧ 2 [0, ⌧ BMB]: V̄↵,N=1(%̄) = V̄⌧ (%̄). We therefore con-
clude that the regularity of V̄1,↵(%̄) together with Eqs.
(6) and (8) determines the relation between ⌧ and ↵.

It is particularly convenient to impose the analyticity
of V̄1,↵(%̄) at %̄ = 1 because all FPs of the BMB line show
an inflection point for this value of %̄ as can be seen on
Fig. 1. Generically, a nonanalytic logarithmic behavior
shows up at this point when substituting Eq. (8) into
Eq. (6). Requiring that its prefactor vanishes imposes
(see Section 3 of the Supplemental Material):

↵� 36⌧ + 96⌧2 = 0. (9)

This equation has two solutions ⌧1(↵) and ⌧2(↵) that
we choose such that ⌧1(↵)  ⌧2(↵) for all ↵, see Fig.
2 of the Supplemental Material. This implies that to
each value of ↵, that is, to each point on the hyperbola
d = 3�↵/N , correspond two FPs on the BMB line that,
as in perturbation theory, are A = A(⌧1(↵)) and Ã =
Ã(⌧2(↵)). According to Eq. (8), for any value of ↵, these
FPs must be the limits of two di↵erent FPs existing at

3

In practice, computing the flow of the potential Uk

requires several steps. First, the potential is defined by:
Uk(�) = �k[�] where � is a constant field. Then, the flow
of Uk(�) is obtained by acting with @t on both sides of
the above definition of Uk and by using Eq. (4). Finally,

�(2)
k in the right hand side of Eq. (4) is computed from

the LPA ansatz, Eq. (5).
It is very convenient for the following to make a change

of variables that simplifies considerably the study of the
large N limit. This change of variables is equivalent to
working with the Wilson-Polchinski flow instead of the
flow of �k, hereafter called the Wetterich flow. Following

Ref. [45], we define: Ṽ (%̃) = Ũ(⇢̃) +
⇣
�̃i � �̃i
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/2 with

%̃ = �̃i�̃i/2 = �̃2/2 and �̃i��̃i = ��̃iṼ 0(%̃) = ��̃iŨ 0(⇢̃).
It is convenient to rescale %̃ and Ṽ (%̃) as usual: %̄ =
%̃/N , V̄ = Ṽ /N . The FP equation for V̄ (%̄) thus reads
[8, 25, 45]
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where the primes mean derivatives with respect to %̄.
Here again, the usual N ! 1 limit consists in assuming
that V̄ (%̄) is regular for all %̄ and thus in discarding the
last term in Eq. (6) because of its 1/N prefactor. In d = 3
andN = 1, there are infinitely many solutions to Eq. (6)
in which the last term has been discarded [1, 8, 9, 46].
They are given by the following implicit expression valid
for the physical solutions of interest here:
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branches %̄ > 1 and %̄ < 1 respectively, and ⌧ is an in-
tegration constant. A detailed analysis of Eq. (7) shows
that (i) the gaussian FP G for which V̄ 0(%̄) = 0 is ob-
tained for ⌧ = 0, (ii) a well-defined solution V̄ (%̄) ex-
ists for all ⌧ 2 [0, ⌧ BMB = 32/(3⇡)2] which therefore
corresponds to the BMB line of FPs, denoted here by
A(⌧), with the BMB FP being the endpoint obtained for
⌧ = ⌧ BMB as in [1, 6–9], (iii) for ⌧ > ⌧ BMB the solutions
of Eq. (7) are not defined on the whole interval %̄ 2 [0,1[
[8], (iv) an isolated solution exists for

p
2/⌧ = 0 which

corresponds to the Wilson-Fisher FP associated with the
usual second order phase transition of the O(N = 1)
model (an analytic continuation is needed when V 0 < 0).
All the FPs corresponding to a value of ⌧ 2 [0, ⌧ BMB[
are twice unstable in the infrared and are tricritical. We
plot their potential in Fig. 1. One observes that, for
all ⌧ < ⌧BMB, the FP potentials V̄⌧ (%̄) along the BMB
line are regular for all values of the field. Approaching
⌧BMB, the FP potentials approach a limiting shape which
shows a singularity at a value %̄0 in its second derivative,
see Fig. 1 and a detailed description below (see also Fig.
1 of the Supplemental Material) [47]. Notice that in the
Wetterich version of the flow [36, 40], the potential of the
BMB FP shows a singularity at vanishing field [9].
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N , either A2(↵) or Ã3(↵), that converges to A(⌧) when
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usual second order phase transition of the O(N = 1)
model (an analytic continuation is needed when V 0 < 0).
All the FPs corresponding to a value of ⌧ 2 [0, ⌧ BMB[
are twice unstable in the infrared and are tricritical. We
plot their potential in Fig. 1. One observes that, for
all ⌧ < ⌧BMB, the FP potentials V̄⌧ (%̄) along the BMB
line are regular for all values of the field. Approaching
⌧BMB, the FP potentials approach a limiting shape which
shows a singularity at a value %̄0 in its second derivative,
see Fig. 1 and a detailed description below (see also Fig.
1 of the Supplemental Material) [47]. Notice that in the
Wetterich version of the flow [36, 40], the potential of the
BMB FP shows a singularity at vanishing field [9].
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Let us now look for the finite N origin of the BMB line
within our functional framework. Just as in perturbation
theory, we take the limit N ! 1 and d ! 3 at fixed
↵ = ✏N . Our aim is to show that to each FP A(⌧) with
⌧ 2 [0, ⌧ BMB] on the BMB line, there is one FP at finite
N , either A2(↵) or Ã3(↵), that converges to A(⌧) when
N ! 1. The problem is therefore to relate admissible
values of ⌧ , that is, values for which a FP on the BMB line
exists, to admissible values of ↵ where A2(↵) or Ã3(↵)
exist.

Within the LPA, the proof goes as follows. We assume
that at large N , the FP potentials can be expanded as:

V̄↵,N (%̄) = V̄↵,N=1(%̄) + V̄1,↵(%̄)/N +O(1/N2). (8)

We assume that V̄↵,N (%̄), V̄1,↵(%̄) and V̄↵,N=1(%̄) are reg-
ular functions of %̄. As such, V̄↵,N=1(%̄) must be the po-
tential of one the FPs on the BMB line. It must therefore
correspond to a solution of Eq. (7) with a definite value
of ⌧ 2 [0, ⌧ BMB]: V̄↵,N=1(%̄) = V̄⌧ (%̄). We therefore con-
clude that the regularity of V̄1,↵(%̄) together with Eqs.
(6) and (8) determines the relation between ⌧ and ↵.

It is particularly convenient to impose the analyticity
of V̄1,↵(%̄) at %̄ = 1 because all FPs of the BMB line show
an inflection point for this value of %̄ as can be seen on
Fig. 1. Generically, a nonanalytic logarithmic behavior
shows up at this point when substituting Eq. (8) into
Eq. (6). Requiring that its prefactor vanishes imposes
(see Section 3 of the Supplemental Material):

↵� 36⌧ + 96⌧2 = 0. (9)

This equation has two solutions ⌧1(↵) and ⌧2(↵) that
we choose such that ⌧1(↵)  ⌧2(↵) for all ↵, see Fig.
2 of the Supplemental Material. This implies that to
each value of ↵, that is, to each point on the hyperbola
d = 3�↵/N , correspond two FPs on the BMB line that,
as in perturbation theory, are A = A(⌧1(↵)) and Ã =
Ã(⌧2(↵)). According to Eq. (8), for any value of ↵, these
FPs must be the limits of two di↵erent FPs existing at
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the above definition of Uk and by using Eq. (4). Finally,

�(2)
k in the right hand side of Eq. (4) is computed from

the LPA ansatz, Eq. (5).
It is very convenient for the following to make a change

of variables that simplifies considerably the study of the
large N limit. This change of variables is equivalent to
working with the Wilson-Polchinski flow instead of the
flow of �k, hereafter called the Wetterich flow. Following

Ref. [45], we define: Ṽ (%̃) = Ũ(⇢̃) +
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where the primes mean derivatives with respect to %̄.
Here again, the usual N ! 1 limit consists in assuming
that V̄ (%̄) is regular for all %̄ and thus in discarding the
last term in Eq. (6) because of its 1/N prefactor. In d = 3
andN = 1, there are infinitely many solutions to Eq. (6)
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that (i) the gaussian FP G for which V̄ 0(%̄) = 0 is ob-
tained for ⌧ = 0, (ii) a well-defined solution V̄ (%̄) ex-
ists for all ⌧ 2 [0, ⌧ BMB = 32/(3⇡)2] which therefore
corresponds to the BMB line of FPs, denoted here by
A(⌧), with the BMB FP being the endpoint obtained for
⌧ = ⌧ BMB as in [1, 6–9], (iii) for ⌧ > ⌧ BMB the solutions
of Eq. (7) are not defined on the whole interval %̄ 2 [0,1[
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p
2/⌧ = 0 which

corresponds to the Wilson-Fisher FP associated with the
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model (an analytic continuation is needed when V 0 < 0).
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plot their potential in Fig. 1. One observes that, for
all ⌧ < ⌧BMB, the FP potentials V̄⌧ (%̄) along the BMB
line are regular for all values of the field. Approaching
⌧BMB, the FP potentials approach a limiting shape which
shows a singularity at a value %̄0 in its second derivative,
see Fig. 1 and a detailed description below (see also Fig.
1 of the Supplemental Material) [47]. Notice that in the
Wetterich version of the flow [36, 40], the potential of the
BMB FP shows a singularity at vanishing field [9].

FIG. 1. Potentials V̄ (%̄) of the tricritical FPs A(⌧) of the
BMB line (blue) together with the Wilson-Fisher FP (red).
The BMB FP is the endpoint of the BMB line (purple). All
these potentials are given by Eq. (7) (in the Wilson-Polchinski
version of the LPA flow). The gaussian FP G corresponds to
the horizontal line. The BMB FP potential shows a disconti-
nuity in its second derivative at %̄0.

Let us now look for the finite N origin of the BMB line
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Wetterich version of the flow [36, 40], the potential of the
BMB FP shows a singularity at vanishing field [9].

FIG. 1. Potentials V̄ (%̄) of the tricritical FPs A(⌧) of the
BMB line (blue) together with the Wilson-Fisher FP (red).
The BMB FP is the endpoint of the BMB line (purple). All
these potentials are given by Eq. (7) (in the Wilson-Polchinski
version of the LPA flow). The gaussian FP G corresponds to
the horizontal line. The BMB FP potential shows a disconti-
nuity in its second derivative at %̄0.

Let us now look for the finite N origin of the BMB line
within our functional framework. Just as in perturbation
theory, we take the limit N ! 1 and d ! 3 at fixed
↵ = ✏N . Our aim is to show that to each FP A(⌧) with
⌧ 2 [0, ⌧ BMB] on the BMB line, there is one FP at finite
N , either A2(↵) or Ã3(↵), that converges to A(⌧) when
N ! 1. The problem is therefore to relate admissible
values of ⌧ , that is, values for which a FP on the BMB line
exists, to admissible values of ↵ where A2(↵) or Ã3(↵)
exist.

Within the LPA, the proof goes as follows. We assume
that at large N , the FP potentials can be expanded as:

V̄↵,N (%̄) = V̄↵,N=1(%̄) + V̄1,↵(%̄)/N +O(1/N2). (8)

We assume that V̄↵,N (%̄), V̄1,↵(%̄) and V̄↵,N=1(%̄) are reg-
ular functions of %̄. As such, V̄↵,N=1(%̄) must be the po-
tential of one the FPs on the BMB line. It must therefore
correspond to a solution of Eq. (7) with a definite value
of ⌧ 2 [0, ⌧ BMB]: V̄↵,N=1(%̄) = V̄⌧ (%̄). We therefore con-
clude that the regularity of V̄1,↵(%̄) together with Eqs.
(6) and (8) determines the relation between ⌧ and ↵.

It is particularly convenient to impose the analyticity
of V̄1,↵(%̄) at %̄ = 1 because all FPs of the BMB line show
an inflection point for this value of %̄ as can be seen on
Fig. 1. Generically, a nonanalytic logarithmic behavior
shows up at this point when substituting Eq. (8) into
Eq. (6). Requiring that its prefactor vanishes imposes
(see Section 3 of the Supplemental Material):

↵� 36⌧ + 96⌧2 = 0. (9)

This equation has two solutions ⌧1(↵) and ⌧2(↵) that
we choose such that ⌧1(↵)  ⌧2(↵) for all ↵, see Fig.
2 of the Supplemental Material. This implies that to
each value of ↵, that is, to each point on the hyperbola
d = 3�↵/N , correspond two FPs on the BMB line that,
as in perturbation theory, are A = A(⌧1(↵)) and Ã =
Ã(⌧2(↵)). According to Eq. (8), for any value of ↵, these
FPs must be the limits of two di↵erent FPs existing at

3

In practice, computing the flow of the potential Uk

requires several steps. First, the potential is defined by:
Uk(�) = �k[�] where � is a constant field. Then, the flow
of Uk(�) is obtained by acting with @t on both sides of
the above definition of Uk and by using Eq. (4). Finally,

�(2)
k in the right hand side of Eq. (4) is computed from

the LPA ansatz, Eq. (5).
It is very convenient for the following to make a change

of variables that simplifies considerably the study of the
large N limit. This change of variables is equivalent to
working with the Wilson-Polchinski flow instead of the
flow of �k, hereafter called the Wetterich flow. Following

Ref. [45], we define: Ṽ (%̃) = Ũ(⇢̃) +
⇣
�̃i � �̃i

⌘2
/2 with

%̃ = �̃i�̃i/2 = �̃2/2 and �̃i��̃i = ��̃iṼ 0(%̃) = ��̃iŨ 0(⇢̃).
It is convenient to rescale %̃ and Ṽ (%̃) as usual: %̄ =
%̃/N , V̄ = Ṽ /N . The FP equation for V̄ (%̄) thus reads
[8, 25, 45]

0 = 1� d V̄ + (d� 2)%̄V̄ 0 + 2%̄V̄ 02 � V̄ 0 � 2

N
%̄ V̄ 00 (6)

where the primes mean derivatives with respect to %̄.
Here again, the usual N ! 1 limit consists in assuming
that V̄ (%̄) is regular for all %̄ and thus in discarding the
last term in Eq. (6) because of its 1/N prefactor. In d = 3
andN = 1, there are infinitely many solutions to Eq. (6)
in which the last term has been discarded [1, 8, 9, 46].
They are given by the following implicit expression valid
for the physical solutions of interest here:
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where %̄+
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V̄ 0� and %̄�

�
V̄ 0� correspond to the two

branches %̄ > 1 and %̄ < 1 respectively, and ⌧ is an in-
tegration constant. A detailed analysis of Eq. (7) shows
that (i) the gaussian FP G for which V̄ 0(%̄) = 0 is ob-
tained for ⌧ = 0, (ii) a well-defined solution V̄ (%̄) ex-
ists for all ⌧ 2 [0, ⌧ BMB = 32/(3⇡)2] which therefore
corresponds to the BMB line of FPs, denoted here by
A(⌧), with the BMB FP being the endpoint obtained for
⌧ = ⌧ BMB as in [1, 6–9], (iii) for ⌧ > ⌧ BMB the solutions
of Eq. (7) are not defined on the whole interval %̄ 2 [0,1[
[8], (iv) an isolated solution exists for

p
2/⌧ = 0 which

corresponds to the Wilson-Fisher FP associated with the
usual second order phase transition of the O(N = 1)
model (an analytic continuation is needed when V 0 < 0).
All the FPs corresponding to a value of ⌧ 2 [0, ⌧ BMB[
are twice unstable in the infrared and are tricritical. We
plot their potential in Fig. 1. One observes that, for
all ⌧ < ⌧BMB, the FP potentials V̄⌧ (%̄) along the BMB
line are regular for all values of the field. Approaching
⌧BMB, the FP potentials approach a limiting shape which
shows a singularity at a value %̄0 in its second derivative,
see Fig. 1 and a detailed description below (see also Fig.
1 of the Supplemental Material) [47]. Notice that in the
Wetterich version of the flow [36, 40], the potential of the
BMB FP shows a singularity at vanishing field [9].
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these potentials are given by Eq. (7) (in the Wilson-Polchinski
version of the LPA flow). The gaussian FP G corresponds to
the horizontal line. The BMB FP potential shows a disconti-
nuity in its second derivative at %̄0.

Let us now look for the finite N origin of the BMB line
within our functional framework. Just as in perturbation
theory, we take the limit N ! 1 and d ! 3 at fixed
↵ = ✏N . Our aim is to show that to each FP A(⌧) with
⌧ 2 [0, ⌧ BMB] on the BMB line, there is one FP at finite
N , either A2(↵) or Ã3(↵), that converges to A(⌧) when
N ! 1. The problem is therefore to relate admissible
values of ⌧ , that is, values for which a FP on the BMB line
exists, to admissible values of ↵ where A2(↵) or Ã3(↵)
exist.

Within the LPA, the proof goes as follows. We assume
that at large N , the FP potentials can be expanded as:

V̄↵,N (%̄) = V̄↵,N=1(%̄) + V̄1,↵(%̄)/N +O(1/N2). (8)

We assume that V̄↵,N (%̄), V̄1,↵(%̄) and V̄↵,N=1(%̄) are reg-
ular functions of %̄. As such, V̄↵,N=1(%̄) must be the po-
tential of one the FPs on the BMB line. It must therefore
correspond to a solution of Eq. (7) with a definite value
of ⌧ 2 [0, ⌧ BMB]: V̄↵,N=1(%̄) = V̄⌧ (%̄). We therefore con-
clude that the regularity of V̄1,↵(%̄) together with Eqs.
(6) and (8) determines the relation between ⌧ and ↵.

It is particularly convenient to impose the analyticity
of V̄1,↵(%̄) at %̄ = 1 because all FPs of the BMB line show
an inflection point for this value of %̄ as can be seen on
Fig. 1. Generically, a nonanalytic logarithmic behavior
shows up at this point when substituting Eq. (8) into
Eq. (6). Requiring that its prefactor vanishes imposes
(see Section 3 of the Supplemental Material):

↵� 36⌧ + 96⌧2 = 0. (9)

This equation has two solutions ⌧1(↵) and ⌧2(↵) that
we choose such that ⌧1(↵)  ⌧2(↵) for all ↵, see Fig.
2 of the Supplemental Material. This implies that to
each value of ↵, that is, to each point on the hyperbola
d = 3�↵/N , correspond two FPs on the BMB line that,
as in perturbation theory, are A = A(⌧1(↵)) and Ã =
Ã(⌧2(↵)). According to Eq. (8), for any value of ↵, these
FPs must be the limits of two di↵erent FPs existing at
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In practice, computing the flow of the potential Uk

requires several steps. First, the potential is defined by:
Uk(�) = �k[�] where � is a constant field. Then, the flow
of Uk(�) is obtained by acting with @t on both sides of
the above definition of Uk and by using Eq. (4). Finally,
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k in the right hand side of Eq. (4) is computed from

the LPA ansatz, Eq. (5).
It is very convenient for the following to make a change

of variables that simplifies considerably the study of the
large N limit. This change of variables is equivalent to
working with the Wilson-Polchinski flow instead of the
flow of �k, hereafter called the Wetterich flow. Following
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%̄ V̄ 00 (6)

where the primes mean derivatives with respect to %̄.
Here again, the usual N ! 1 limit consists in assuming
that V̄ (%̄) is regular for all %̄ and thus in discarding the
last term in Eq. (6) because of its 1/N prefactor. In d = 3
andN = 1, there are infinitely many solutions to Eq. (6)
in which the last term has been discarded [1, 8, 9, 46].
They are given by the following implicit expression valid
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branches %̄ > 1 and %̄ < 1 respectively, and ⌧ is an in-
tegration constant. A detailed analysis of Eq. (7) shows
that (i) the gaussian FP G for which V̄ 0(%̄) = 0 is ob-
tained for ⌧ = 0, (ii) a well-defined solution V̄ (%̄) ex-
ists for all ⌧ 2 [0, ⌧ BMB = 32/(3⇡)2] which therefore
corresponds to the BMB line of FPs, denoted here by
A(⌧), with the BMB FP being the endpoint obtained for
⌧ = ⌧ BMB as in [1, 6–9], (iii) for ⌧ > ⌧ BMB the solutions
of Eq. (7) are not defined on the whole interval %̄ 2 [0,1[
[8], (iv) an isolated solution exists for
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2/⌧ = 0 which

corresponds to the Wilson-Fisher FP associated with the
usual second order phase transition of the O(N = 1)
model (an analytic continuation is needed when V 0 < 0).
All the FPs corresponding to a value of ⌧ 2 [0, ⌧ BMB[
are twice unstable in the infrared and are tricritical. We
plot their potential in Fig. 1. One observes that, for
all ⌧ < ⌧BMB, the FP potentials V̄⌧ (%̄) along the BMB
line are regular for all values of the field. Approaching
⌧BMB, the FP potentials approach a limiting shape which
shows a singularity at a value %̄0 in its second derivative,
see Fig. 1 and a detailed description below (see also Fig.
1 of the Supplemental Material) [47]. Notice that in the
Wetterich version of the flow [36, 40], the potential of the
BMB FP shows a singularity at vanishing field [9].
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Let us now look for the finite N origin of the BMB line
within our functional framework. Just as in perturbation
theory, we take the limit N ! 1 and d ! 3 at fixed
↵ = ✏N . Our aim is to show that to each FP A(⌧) with
⌧ 2 [0, ⌧ BMB] on the BMB line, there is one FP at finite
N , either A2(↵) or Ã3(↵), that converges to A(⌧) when
N ! 1. The problem is therefore to relate admissible
values of ⌧ , that is, values for which a FP on the BMB line
exists, to admissible values of ↵ where A2(↵) or Ã3(↵)
exist.

Within the LPA, the proof goes as follows. We assume
that at large N , the FP potentials can be expanded as:

V̄↵,N (%̄) = V̄↵,N=1(%̄) + V̄1,↵(%̄)/N +O(1/N2). (8)

We assume that V̄↵,N (%̄), V̄1,↵(%̄) and V̄↵,N=1(%̄) are reg-
ular functions of %̄. As such, V̄↵,N=1(%̄) must be the po-
tential of one the FPs on the BMB line. It must therefore
correspond to a solution of Eq. (7) with a definite value
of ⌧ 2 [0, ⌧ BMB]: V̄↵,N=1(%̄) = V̄⌧ (%̄). We therefore con-
clude that the regularity of V̄1,↵(%̄) together with Eqs.
(6) and (8) determines the relation between ⌧ and ↵.

It is particularly convenient to impose the analyticity
of V̄1,↵(%̄) at %̄ = 1 because all FPs of the BMB line show
an inflection point for this value of %̄ as can be seen on
Fig. 1. Generically, a nonanalytic logarithmic behavior
shows up at this point when substituting Eq. (8) into
Eq. (6). Requiring that its prefactor vanishes imposes
(see Section 3 of the Supplemental Material):

↵� 36⌧ + 96⌧2 = 0. (9)

This equation has two solutions ⌧1(↵) and ⌧2(↵) that
we choose such that ⌧1(↵)  ⌧2(↵) for all ↵, see Fig.
2 of the Supplemental Material. This implies that to
each value of ↵, that is, to each point on the hyperbola
d = 3�↵/N , correspond two FPs on the BMB line that,
as in perturbation theory, are A = A(⌧1(↵)) and Ã =
Ã(⌧2(↵)). According to Eq. (8), for any value of ↵, these
FPs must be the limits of two di↵erent FPs existing at
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requires several steps. First, the potential is defined by:
Uk(�) = �k[�] where � is a constant field. Then, the flow
of Uk(�) is obtained by acting with @t on both sides of
the above definition of Uk and by using Eq. (4). Finally,
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where the primes mean derivatives with respect to %̄.
Here again, the usual N ! 1 limit consists in assuming
that V̄ (%̄) is regular for all %̄ and thus in discarding the
last term in Eq. (6) because of its 1/N prefactor. In d = 3
andN = 1, there are infinitely many solutions to Eq. (6)
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branches %̄ > 1 and %̄ < 1 respectively, and ⌧ is an in-
tegration constant. A detailed analysis of Eq. (7) shows
that (i) the gaussian FP G for which V̄ 0(%̄) = 0 is ob-
tained for ⌧ = 0, (ii) a well-defined solution V̄ (%̄) ex-
ists for all ⌧ 2 [0, ⌧ BMB = 32/(3⇡)2] which therefore
corresponds to the BMB line of FPs, denoted here by
A(⌧), with the BMB FP being the endpoint obtained for
⌧ = ⌧ BMB as in [1, 6–9], (iii) for ⌧ > ⌧ BMB the solutions
of Eq. (7) are not defined on the whole interval %̄ 2 [0,1[
[8], (iv) an isolated solution exists for
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corresponds to the Wilson-Fisher FP associated with the
usual second order phase transition of the O(N = 1)
model (an analytic continuation is needed when V 0 < 0).
All the FPs corresponding to a value of ⌧ 2 [0, ⌧ BMB[
are twice unstable in the infrared and are tricritical. We
plot their potential in Fig. 1. One observes that, for
all ⌧ < ⌧BMB, the FP potentials V̄⌧ (%̄) along the BMB
line are regular for all values of the field. Approaching
⌧BMB, the FP potentials approach a limiting shape which
shows a singularity at a value %̄0 in its second derivative,
see Fig. 1 and a detailed description below (see also Fig.
1 of the Supplemental Material) [47]. Notice that in the
Wetterich version of the flow [36, 40], the potential of the
BMB FP shows a singularity at vanishing field [9].
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Let us now look for the finite N origin of the BMB line
within our functional framework. Just as in perturbation
theory, we take the limit N ! 1 and d ! 3 at fixed
↵ = ✏N . Our aim is to show that to each FP A(⌧) with
⌧ 2 [0, ⌧ BMB] on the BMB line, there is one FP at finite
N , either A2(↵) or Ã3(↵), that converges to A(⌧) when
N ! 1. The problem is therefore to relate admissible
values of ⌧ , that is, values for which a FP on the BMB line
exists, to admissible values of ↵ where A2(↵) or Ã3(↵)
exist.

Within the LPA, the proof goes as follows. We assume
that at large N , the FP potentials can be expanded as:

V̄↵,N (%̄) = V̄↵,N=1(%̄) + V̄1,↵(%̄)/N +O(1/N2). (8)

We assume that V̄↵,N (%̄), V̄1,↵(%̄) and V̄↵,N=1(%̄) are reg-
ular functions of %̄. As such, V̄↵,N=1(%̄) must be the po-
tential of one the FPs on the BMB line. It must therefore
correspond to a solution of Eq. (7) with a definite value
of ⌧ 2 [0, ⌧ BMB]: V̄↵,N=1(%̄) = V̄⌧ (%̄). We therefore con-
clude that the regularity of V̄1,↵(%̄) together with Eqs.
(6) and (8) determines the relation between ⌧ and ↵.

It is particularly convenient to impose the analyticity
of V̄1,↵(%̄) at %̄ = 1 because all FPs of the BMB line show
an inflection point for this value of %̄ as can be seen on
Fig. 1. Generically, a nonanalytic logarithmic behavior
shows up at this point when substituting Eq. (8) into
Eq. (6). Requiring that its prefactor vanishes imposes
(see Section 3 of the Supplemental Material):

↵� 36⌧ + 96⌧2 = 0. (9)

This equation has two solutions ⌧1(↵) and ⌧2(↵) that
we choose such that ⌧1(↵)  ⌧2(↵) for all ↵, see Fig.
2 of the Supplemental Material. This implies that to
each value of ↵, that is, to each point on the hyperbola
d = 3�↵/N , correspond two FPs on the BMB line that,
as in perturbation theory, are A = A(⌧1(↵)) and Ã =
Ã(⌧2(↵)). According to Eq. (8), for any value of ↵, these
FPs must be the limits of two di↵erent FPs existing at
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Supplemental Materials
Surprises in the O(N) models: nonperturbative fixed points, large N limit and

multi-criticality

I. THE FLOW EQUATION OF THE EFFECTIVE POTENTIAL WITHIN LPA APPROXIMATION
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FIG. S1. The rescaled FP potential at d = dc(N) with N = 200, 480 and 1600. We can see that the FP potential almost
converges to a limiting function, which is different from the GFP.

We define the dimensionless field ρ̃ and potential Ũk as

ρ̃ = v−1
d k2−dρ

Ũk(ρ̃) = v−1
d k−dUk (ρ)

(S.1)

with

vd =
1

2d−1dπd/2Γ
(
d
2

) . (S.2)

Using t = log(k/Λ) and the dimensionless and renormalized quantities, denoted by a tilde, the flow of the effective
potential Ũk reads at the LPA[1]:

∂tŨt = −dŨt + (d− 2)ρ̃Ũ ′
t −

d

2

∫ ∞

0
dyyd/2+1r′(y)

(
1

y(1 + r(y)) + Ũ ′
t + 2ρ̃Ũ ′′

t

+
N − 1

y(1 + r(y)) + Ũ ′
t

)
(S.3)

with y = q2/k2, Rk(q) = q2r(y), Ũ ′
t = ∂ρŨt, Ũ ′′

t = ∂2
ρŨt. We employed the cutoff Rk(q) = (k2 − q2)θ(k2 − q2) [2].

This leads to r(y) = (1/y − 1)θ(1− y), which is convenient for analytial treatments for LPA calculations. With this
cutoff, the flow equation becomes
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II. THE T2 = C3 FP POTENTIAL SHAPE ON N = Nc(d)

It is also interesting to notice that by rescaling the potential and the field: U → Ū ≡ U/N and ρ → ρ̄ ≡ ρ/N ,
the explicit factor N in the LPA flow of the potential, Eq.(S.4), disappears in the large N limit, if we assume no
singularities of U , U ′ and U ′′. This implies that for large enough values of N , the shape of the rescaled FP potential
is almost independent of N . Using this rescaling, we find that this limit shape of Ū∗ on the line Nc(d) when d → 3
(or equivalently when N → ∞) is clearly regular and not gaussian even though T2 is closer and closer to the GFP at
large N . This limit FP is therefore also different from the BMB FP, which shows a cusp, as shown in Fig. S1.

This means that, for a fixed and large value of N , the shape of the rescaled potential Ū∗ changes very rapidly
between d = 3−, where T2 coincides with the GFP, and d = dc(N) where it collapses with C3.
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t

. (S.4)

II. THE T2 = C3 FP POTENTIAL SHAPE ON N = Nc(d)

It is also interesting to notice that by rescaling the potential and the field: U → Ū ≡ U/N and ρ → ρ̄ ≡ ρ/N ,
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 Relation between a path to (d=3, N=∞) 
and the limiting FP on the BMB line

• Let us consider to follow T2 or C3 on a path       
toward (d=3,N=∞) :   

• It approaches a FP on the BMB line and    is given 
by  

• Derivation: We expand the potential as  
 
 
and impose analyticity of            around

d = 3� ↵/N
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3

In practice, computing the flow of the potential Uk

requires several steps. First, the potential is defined by:
Uk(�) = �k[�] where � is a constant field. Then, the flow
of Uk(�) is obtained by acting with @t on both sides of
the above definition of Uk and by using Eq. (4). Finally,

�(2)
k in the right hand side of Eq. (4) is computed from

the LPA ansatz, Eq. (5).
It is very convenient for the following to make a change

of variables that simplifies considerably the study of the
large N limit. This change of variables is equivalent to
working with the Wilson-Polchinski flow instead of the
flow of �k, hereafter called the Wetterich flow. Following

Ref. [45], we define: Ṽ (%̃) = Ũ(⇢̃) +
⇣
�̃i � �̃i

⌘2
/2 with

%̃ = �̃i�̃i/2 = �̃2/2 and �̃i��̃i = ��̃iṼ 0(%̃) = ��̃iŨ 0(⇢̃).
It is convenient to rescale %̃ and Ṽ (%̃) as usual: %̄ =
%̃/N , V̄ = Ṽ /N . The FP equation for V̄ (%̄) thus reads
[8, 25, 45]

0 = 1� d V̄ + (d� 2)%̄V̄ 0 + 2%̄V̄ 02 � V̄ 0 � 2

N
%̄ V̄ 00 (6)

where the primes mean derivatives with respect to %̄.
Here again, the usual N ! 1 limit consists in assuming
that V̄ (%̄) is regular for all %̄ and thus in discarding the
last term in Eq. (6) because of its 1/N prefactor. In d = 3
andN = 1, there are infinitely many solutions to Eq. (6)
in which the last term has been discarded [1, 8, 9, 46].
They are given by the following implicit expression valid
for the physical solutions of interest here:

%̄± = 1 +
V̄ 0 � 5

2 � V̄ 0�
�
1� V̄ 0

�2 +
3
2 arcsin

p
V̄ 0 ±

p
2/⌧

�
V̄ 0

��1/2 �
1� V̄ 0

�5/2 (7)

where %̄+
�
V̄ 0� and %̄�

�
V̄ 0� correspond to the two

branches %̄ > 1 and %̄ < 1 respectively, and ⌧ is an in-
tegration constant. A detailed analysis of Eq. (7) shows
that (i) the gaussian FP G for which V̄ 0(%̄) = 0 is ob-
tained for ⌧ = 0, (ii) a well-defined solution V̄ (%̄) ex-
ists for all ⌧ 2 [0, ⌧ BMB = 32/(3⇡)2] which therefore
corresponds to the BMB line of FPs, denoted here by
A(⌧), with the BMB FP being the endpoint obtained for
⌧ = ⌧ BMB as in [1, 6–9], (iii) for ⌧ > ⌧ BMB the solutions
of Eq. (7) are not defined on the whole interval %̄ 2 [0,1[
[8], (iv) an isolated solution exists for

p
2/⌧ = 0 which

corresponds to the Wilson-Fisher FP associated with the
usual second order phase transition of the O(N = 1)
model (an analytic continuation is needed when V 0 < 0).
All the FPs corresponding to a value of ⌧ 2 [0, ⌧ BMB[
are twice unstable in the infrared and are tricritical. We
plot their potential in Fig. 1. One observes that, for
all ⌧ < ⌧BMB, the FP potentials V̄⌧ (%̄) along the BMB
line are regular for all values of the field. Approaching
⌧BMB, the FP potentials approach a limiting shape which
shows a singularity at a value %̄0 in its second derivative,
see Fig. 1 and a detailed description below (see also Fig.
1 of the Supplemental Material) [47]. Notice that in the
Wetterich version of the flow [36, 40], the potential of the
BMB FP shows a singularity at vanishing field [9].

FIG. 1. Potentials V̄ (%̄) of the tricritical FPs A(⌧) of the
BMB line (blue) together with the Wilson-Fisher FP (red).
The BMB FP is the endpoint of the BMB line (purple). All
these potentials are given by Eq. (7) (in the Wilson-Polchinski
version of the LPA flow). The gaussian FP G corresponds to
the horizontal line. The BMB FP potential shows a disconti-
nuity in its second derivative at %̄0.

Let us now look for the finite N origin of the BMB line
within our functional framework. Just as in perturbation
theory, we take the limit N ! 1 and d ! 3 at fixed
↵ = ✏N . Our aim is to show that to each FP A(⌧) with
⌧ 2 [0, ⌧ BMB] on the BMB line, there is one FP at finite
N , either A2(↵) or Ã3(↵), that converges to A(⌧) when
N ! 1. The problem is therefore to relate admissible
values of ⌧ , that is, values for which a FP on the BMB line
exists, to admissible values of ↵ where A2(↵) or Ã3(↵)
exist.

Within the LPA, the proof goes as follows. We assume
that at large N , the FP potentials can be expanded as:

V̄↵,N (%̄) = V̄↵,N=1(%̄) + V̄1,↵(%̄)/N +O(1/N2). (8)

We assume that V̄↵,N (%̄), V̄1,↵(%̄) and V̄↵,N=1(%̄) are reg-
ular functions of %̄. As such, V̄↵,N=1(%̄) must be the po-
tential of one the FPs on the BMB line. It must therefore
correspond to a solution of Eq. (7) with a definite value
of ⌧ 2 [0, ⌧ BMB]: V̄↵,N=1(%̄) = V̄⌧ (%̄). We therefore con-
clude that the regularity of V̄1,↵(%̄) together with Eqs.
(6) and (8) determines the relation between ⌧ and ↵.

It is particularly convenient to impose the analyticity
of V̄1,↵(%̄) at %̄ = 1 because all FPs of the BMB line show
an inflection point for this value of %̄ as can be seen on
Fig. 1. Generically, a nonanalytic logarithmic behavior
shows up at this point when substituting Eq. (8) into
Eq. (6). Requiring that its prefactor vanishes imposes
(see Section 3 of the Supplemental Material):

↵� 36⌧ + 96⌧2 = 0. (9)

This equation has two solutions ⌧1(↵) and ⌧2(↵) that
we choose such that ⌧1(↵)  ⌧2(↵) for all ↵, see Fig.
2 of the Supplemental Material. This implies that to
each value of ↵, that is, to each point on the hyperbola
d = 3�↵/N , correspond two FPs on the BMB line that,
as in perturbation theory, are A = A(⌧1(↵)) and Ã =
Ã(⌧2(↵)). According to Eq. (8), for any value of ↵, these
FPs must be the limits of two di↵erent FPs existing at
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%̃/N , V̄ = Ṽ /N . The FP equation for V̄ (%̄) thus reads
[8, 25, 45]

0 = 1� d V̄ + (d� 2)%̄V̄ 0 + 2%̄V̄ 02 � V̄ 0 � 2

N
%̄ V̄ 00 (6)

where the primes mean derivatives with respect to %̄.
Here again, the usual N ! 1 limit consists in assuming
that V̄ (%̄) is regular for all %̄ and thus in discarding the
last term in Eq. (6) because of its 1/N prefactor. In d = 3
andN = 1, there are infinitely many solutions to Eq. (6)
in which the last term has been discarded [1, 8, 9, 46].
They are given by the following implicit expression valid
for the physical solutions of interest here:

%̄± = 1 +
V̄ 0 � 5

2 � V̄ 0�
�
1� V̄ 0

�2 +
3
2 arcsin

p
V̄ 0 ±

p
2/⌧

�
V̄ 0

��1/2 �
1� V̄ 0

�5/2 (7)

where %̄+
�
V̄ 0� and %̄�

�
V̄ 0� correspond to the two

branches %̄ > 1 and %̄ < 1 respectively, and ⌧ is an in-
tegration constant. A detailed analysis of Eq. (7) shows
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tained for ⌧ = 0, (ii) a well-defined solution V̄ (%̄) ex-
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corresponds to the BMB line of FPs, denoted here by
A(⌧), with the BMB FP being the endpoint obtained for
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plot their potential in Fig. 1. One observes that, for
all ⌧ < ⌧BMB, the FP potentials V̄⌧ (%̄) along the BMB
line are regular for all values of the field. Approaching
⌧BMB, the FP potentials approach a limiting shape which
shows a singularity at a value %̄0 in its second derivative,
see Fig. 1 and a detailed description below (see also Fig.
1 of the Supplemental Material) [47]. Notice that in the
Wetterich version of the flow [36, 40], the potential of the
BMB FP shows a singularity at vanishing field [9].
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It is convenient to rescale %̃ and Ṽ (%̃) as usual: %̄ =
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where the primes mean derivatives with respect to %̄.
Here again, the usual N ! 1 limit consists in assuming
that V̄ (%̄) is regular for all %̄ and thus in discarding the
last term in Eq. (6) because of its 1/N prefactor. In d = 3
andN = 1, there are infinitely many solutions to Eq. (6)
in which the last term has been discarded [1, 8, 9, 46].
They are given by the following implicit expression valid
for the physical solutions of interest here:

%̄± = 1 +
V̄ 0 � 5

2 � V̄ 0�
�
1� V̄ 0

�2 +
3
2 arcsin

p
V̄ 0 ±

p
2/⌧

�
V̄ 0

��1/2 �
1� V̄ 0

�5/2 (7)

where %̄+
�
V̄ 0� and %̄�

�
V̄ 0� correspond to the two

branches %̄ > 1 and %̄ < 1 respectively, and ⌧ is an in-
tegration constant. A detailed analysis of Eq. (7) shows
that (i) the gaussian FP G for which V̄ 0(%̄) = 0 is ob-
tained for ⌧ = 0, (ii) a well-defined solution V̄ (%̄) ex-
ists for all ⌧ 2 [0, ⌧ BMB = 32/(3⇡)2] which therefore
corresponds to the BMB line of FPs, denoted here by
A(⌧), with the BMB FP being the endpoint obtained for
⌧ = ⌧ BMB as in [1, 6–9], (iii) for ⌧ > ⌧ BMB the solutions
of Eq. (7) are not defined on the whole interval %̄ 2 [0,1[
[8], (iv) an isolated solution exists for

p
2/⌧ = 0 which

corresponds to the Wilson-Fisher FP associated with the
usual second order phase transition of the O(N = 1)
model (an analytic continuation is needed when V 0 < 0).
All the FPs corresponding to a value of ⌧ 2 [0, ⌧ BMB[
are twice unstable in the infrared and are tricritical. We
plot their potential in Fig. 1. One observes that, for
all ⌧ < ⌧BMB, the FP potentials V̄⌧ (%̄) along the BMB
line are regular for all values of the field. Approaching
⌧BMB, the FP potentials approach a limiting shape which
shows a singularity at a value %̄0 in its second derivative,
see Fig. 1 and a detailed description below (see also Fig.
1 of the Supplemental Material) [47]. Notice that in the
Wetterich version of the flow [36, 40], the potential of the
BMB FP shows a singularity at vanishing field [9].

FIG. 1. Potentials V̄ (%̄) of the tricritical FPs A(⌧) of the
BMB line (blue) together with the Wilson-Fisher FP (red).
The BMB FP is the endpoint of the BMB line (purple). All
these potentials are given by Eq. (7) (in the Wilson-Polchinski
version of the LPA flow). The gaussian FP G corresponds to
the horizontal line. The BMB FP potential shows a disconti-
nuity in its second derivative at %̄0.

Let us now look for the finite N origin of the BMB line
within our functional framework. Just as in perturbation
theory, we take the limit N ! 1 and d ! 3 at fixed
↵ = ✏N . Our aim is to show that to each FP A(⌧) with
⌧ 2 [0, ⌧ BMB] on the BMB line, there is one FP at finite
N , either A2(↵) or Ã3(↵), that converges to A(⌧) when
N ! 1. The problem is therefore to relate admissible
values of ⌧ , that is, values for which a FP on the BMB line
exists, to admissible values of ↵ where A2(↵) or Ã3(↵)
exist.

Within the LPA, the proof goes as follows. We assume
that at large N , the FP potentials can be expanded as:

V̄↵,N (%̄) = V̄↵,N=1(%̄) + V̄1,↵(%̄)/N +O(1/N2). (8)

We assume that V̄↵,N (%̄), V̄1,↵(%̄) and V̄↵,N=1(%̄) are reg-
ular functions of %̄. As such, V̄↵,N=1(%̄) must be the po-
tential of one the FPs on the BMB line. It must therefore
correspond to a solution of Eq. (7) with a definite value
of ⌧ 2 [0, ⌧ BMB]: V̄↵,N=1(%̄) = V̄⌧ (%̄). We therefore con-
clude that the regularity of V̄1,↵(%̄) together with Eqs.
(6) and (8) determines the relation between ⌧ and ↵.

It is particularly convenient to impose the analyticity
of V̄1,↵(%̄) at %̄ = 1 because all FPs of the BMB line show
an inflection point for this value of %̄ as can be seen on
Fig. 1. Generically, a nonanalytic logarithmic behavior
shows up at this point when substituting Eq. (8) into
Eq. (6). Requiring that its prefactor vanishes imposes
(see Section 3 of the Supplemental Material):

↵� 36⌧ + 96⌧2 = 0. (9)

This equation has two solutions ⌧1(↵) and ⌧2(↵) that
we choose such that ⌧1(↵)  ⌧2(↵) for all ↵, see Fig.
2 of the Supplemental Material. This implies that to
each value of ↵, that is, to each point on the hyperbola
d = 3�↵/N , correspond two FPs on the BMB line that,
as in perturbation theory, are A = A(⌧1(↵)) and Ã =
Ã(⌧2(↵)). According to Eq. (8), for any value of ↵, these
FPs must be the limits of two di↵erent FPs existing at
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Supplemental Material

I. PLOT OF V̄
0 AND SINGULARITY OF THE BMB FP POTENTIAL

In Fig.1 of the main text, for ⌧ = ⌧BMB, V̄ (%̄) has a discontinuous curvature that is not very visible. We thus choose
to plot V̄ 0 as a function of %̄:

FIG. S1. Potentials V̄
0(%̄) of the tricritical FPs A(⌧) = {A(⌧), Ã(⌧)} of the BMB line (blue). The BMB FP is the endpoint

of the BMB line (purple). The second derivative V̄
00(%̄) of the potential of the BMB FP shows a discontinuity in its second

derivative at %̄ = %̄0.

II. PLOT OF ⌧ AS A FUNCTION OF ↵

We plot here the relation between ⌧ and ↵ as a visual means of understanding how the finite N FPs A2(↵) and
Ã3(↵) relate to the BMB line A(⌧)
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FIG. S2. ⌧ on the BMB line at N = 1 as a function of ↵ = (d� 3)N within the LPA approximation of the NPRG formalism.
The two branches given by A and Ã give the limits when N ! 1 of the two FPs at finite but large N , namely A2(↵) and
Ã3(↵). Both branches meet at ↵ = ↵c = 3.375 and the upper branch Ã extends to the point (↵BMB, ⌧BMB) ' (0.51, 0.36)



More FP structures in 
finite N

●

●

In preparation



Collision between FPs  
in finite (but large) N
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•     and       (singular and 4-unstable) in  

•       and        (singular and 3-unstable) in 
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singular FPs
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finite N : They are nothing but the A2(↵) and Ã3(↵) FPs
found perturbatively from Eq. (1) with, by definition,
A2(↵) ! A(⌧1(↵)) and Ã3(↵) ! Ã(⌧2(↵)) whenN ! 1.

Let us first notice that, as expected, A(⌧ = 0) = G
since A2(↵ = 0) = G, 8N . For finite ↵, the A2(↵) FPs
are continuously related to G by continuously decreasing
d at fixed N and their limit at N = 1 must therefore
also be continuously related to G on the BMB line. This
is the A(⌧1(↵)) branch of this line. This branch meets the
other one for ⌧1(↵) = ⌧2(↵) ⌘ ⌧c, that is, A(⌧c) = Ã(⌧c).
At finite N , this indicates that A2(↵) = Ã3(↵), which,
by definition, occurs for ↵ = ↵c. Within the LPA, we
find ↵LPA

c = 27/8 = 3.375 instead of the exact result
36/⇡2 ' 3.65 obtained from Eq. (1). For values of ⌧
larger than ⌧c, that is, ⌧ = ⌧2(↵) 2 [⌧c, ⌧BMB], the Ã(⌧)
FPs on the BMB line are the limits of Ã3(↵). Using
Eq.(9) we find for ⌧ that its upper bound ⌧BMB translates
into a lower bound on ↵: ↵BMB = ↵(⌧BMB). At the LPA,
we find from Eq. (9): ↵LPA

BMB ' 0.51.

The first order in the 1/N expansion performed in
Eq. (8) does not allow us to fully understand how Ã3(↵)
disappears at finite N for ↵ < ↵BMB and we therefore
have had recourse to a numerical integration of the flow.
We have checked numerically at finite and large N (typi-
cally N > 75) by directly integrating Eq. (6) that all the
results described previously are indeed correct within the
LPA. More precisely, we have checked the following: ex-
istence of A2 for all N that emerges from G below d = 3,
collapse of A2 with another, three times unstable FP Ã3

on the line dc(N) [24], existence of Ã3 on a finite interval
↵BMB  ↵  ↵c only, existence of well-defined limits of
A2(↵) and Ã3(↵) when N ! 1 given by the potentials
of A(⌧1(↵)) and Ã(⌧2(↵)) as found in Eq. (7).

Our numerical analysis of Eq. (6) raises two paradoxes
of the 1/N analysis above. The first one is related to
the question: How is it possible that Ã3 disappears at
finite N for ↵ < ↵BMB? Usually, a FP disappears by
colliding with another one. We have numerically found
that this is again what happens here: there is indeed
another FP, di↵erent from A2, with which Ã3 collides at
↵ = ↵BMB. We call it SÃ4 where the meaning of the S
will be clarified in the following. A first paradox appears
here: SÃ4 has no counterpart at N = 1 in the BMB
line although the potentials of Eq. (7) are supposed to
constitute the complete set of solutions of Eq. (6) at N =
1. The second question is: On which range of values of
↵ does SÃ4 exist? We have found that at fixed and large
N , it also exists on a finite interval of dimensions d with
d < 3�↵BMB/N and that it collides with yet another FP,
that we call SA3 [48]. We have numerically found at very
large N that this collision between SÃ4 and SA3 seems
to occur at the same value ↵ = ↵c where A2 collides
with Ã3. The second paradox is that again there is no
counterpart of SA3 at N = 1 and d = 3 in the potentials
of Eq. (7). To summarize, we have numerically found for
finite and very large values of N that for ↵BMB < ↵ <
↵c four FPs exist: A2, Ã3, SÃ4, SA3. The remarkable

150

75

FIG. 2. N = 1 and d = 3: Singular potential of SA(⌧ =
0.33) from the potential of A(⌧ = 0.33) given by the red
and dashed red curves, Eq. (7). The green and dashed green
curves show V̄ (%̄) = %̄. The potential of SA(⌧ = 0.33) is made
of the plain green and red curves that meet at %̄0(⌧ = 0.33).
Inset: zoom of the region around the cusp and its rounding
at finite N within the boundary layer.

values of ↵ correspond to the collision between these FPs:
A2(↵c) = Ã3(↵c), Ã3(↵BMB) = SÃ4(↵BMB), SÃ4(↵c) =
SA3(↵c) and we recall that A2(0) = G.

The two paradoxes described above are solved by re-
alizing that the potentials of both SÃ4 and SA3 become
singular in the N ! 1 limit: Strictly speaking, since
they show a singularity at N = 1, they are not solutions
of Eq. (6) in which the last term has been discarded and
therefore do not belong to the set of solutions given in
Eq. (7). We show below both at finite and infinite N
how these FPs can be fully analytically characterized.

Let us start by the N = 1 case. Since the potentials
we are interested in are singular, we must enlarge the
space of functions in which Eq. (6) is solved at N = 1.
We consider in the following only solutions that show a
cusp at an isolated value of %̄: They will be obtained by
matching together solutions of Eq. (6), with the 1/N
term discarded, that are piecewise well-defined.

We first notice that the second derivative of the po-
tential of the BMB FP shows a discontinuity at %̄0, as
already mentioned above, see Fig. 1 and Fig. 1 of the
Supplemental Material. This potential is indeed made
of two parts: a linear part V̄ (%̄) = %̄ up to the value
%̄0 and a part for %̄ > %̄0 where V̄ 00(%̄) 6= 0. The value
of %̄0 is determined by the continuity of V̄ 0(%̄0), see Fig.
1. From the construction of the BMB FP potential de-
scribed above, it is simple to build a “singular copy” of
the BMB line: Take any FP on this line, either Ã(⌧) or
A(⌧), and, as shown in Fig. 2, replace the small %̄ part
of the potential by the straight line V̄ (%̄) = %̄ up to the
point %̄0(⌧) where the two curves meet. The result is ob-
viously a solution of Eq. (6) at N = 1 for all %̄ 6= %̄0(⌧).
It is therefore a FP potential with the peculiarity that
it shows a cusp at %̄0(⌧). We call SÃ(⌧) and SA(⌧) the
resulting FPs which are generically denoted by SA(⌧),
the S meaning singular. We thus discover that the usual
BMB line is actually only half of the true line of FPs
at N = 1. In the construction above, the BMB FP
plays a pivotal role since all singular FPs are obtained

⌧ = 0.33
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Boundary layer analysis
• We define the scaled variable 

• At the leading order of 1/N,  

• The solution is given as
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by continuously deforming its potential.

We now show that the singular FPs SÃ(⌧) and SA(⌧)
are the limits at N = 1 and d = 3 of the SÃ4(↵)
and SA3(↵) FPs in much the same way as A(⌧1(↵)) and
Ã(⌧2(↵)) are the limits of A2(↵) and Ã3(↵). The con-
struction of the potentials of the finite and large N ex-
tensions of SA(⌧) relies on the idea that the cusp of these
potentials builds up as N increases, that is, the cusp is
smoothened at finite N and shows up only in the limit
N ! 1. In other words, at finite N , there should exist a
boundary layer around the point %̄0(⌧), such that inside
the layer the potential varies smoothly – but abruptly
– in order to connect the linear part of the potential
for %̄ < %̄0(⌧) to the nontrivial part of the potential for
%̄ > %̄0(⌧). Moreover, the boundary layer should be su�-
ciently thin such that V̄ 00 varies as N at large N in such
a way that inside the layer it compensates the 1/N factor
in front of it in Eq. (6). This is achieved by a layer of
typical width 1/N . In this case, all the terms of Eq. (6),
including the last one, must be retained in the large N
limit because they are all of the same order in N .

Finding the boundary layer is easier done with V̄ 0(%̄)
rather than with V̄ (%̄) (see section 4 of the Supplemental
Material for details). We define the scaled variable: %̃ =
N (%̄� %̄0) inside the layer. Then, we find that in terms of
this variable, F (%̃) = V̄ 0(%̄) satisfies inside the boundary
layer and at leading order in 1/N : 0 = 1�3 V̄ (%̄0)+%̄0F+
2%̄0

�
F 2 � F 0� � F. The solution of this equation reads:

F (%̃) = V1�V2 tanh (V2 %̃) with 2Vi = V 0 (%̄0�)±V 0 (%̄0+)
where the plus sign goes with i = 1 and the minus sign
with i = 2. It is then straightforward to show that this
solution connects smoothly the two values V̄ 0(%̄�

0 ) and
V̄ 0(%̄+0 ) across the boundary layer, as expected. Notice
that the existence of a boundary layer cannot be found by
usual perturbative means that assume that the rescaling
of % and of the potential by a factor of N –which leads
to the usual scaling of � in Eq. (1)– does not depend on
the value of %.

Now that we have shown that the potentials of the
SA(⌧) FPs have a possible extension at finite N , we have
to study on which interval of dimensions d = 3 � ↵/N
these FPs exist. The crucial remark here is that the
potential of SA(⌧) is identical to that of A(⌧) for %̄ >
%̄0(⌧) and in particular at %̄ = 1. For these values of %̄,
the argument used to connect the FPs A2(↵) and Ã3(↵)
found at finite N to the FPs A(⌧1) and Ã(⌧2) at N =
1 can be repeated for the singular FPs. It yields the
same conclusion: There exists two FPs at finite N whose
limits are SA(⌧1) and SÃ(⌧2). These FPs are of course
those that were found numerically, that is, SÃ4(↵) and
SA3(↵) and the relation between ↵ and ⌧ is again given
by Eq. (9). At asymptotically large N , the two FPs
SA3(↵) and SÃ4(↵) must therefore collide on the same
line dc(N) = 3 � ↵c/N as A2(↵) and Ã3(↵). Since for
⌧ = ⌧BMB, SÃ = Ã = BMB FP, we must have at large N :
SÃ4(↵BMB) = Ã3(↵BMB). Therefore, at largeN , SÃ4(↵)
exists only on the interval: ↵ 2 [↵BMB,↵c]. All these

results prove analytically what was empirically found in
our numerical analysis. [The numerical analysis makes
easy the determination of the number of infrared unstable
directions for each FP]. As for SA3, we have been able
to follow it up to dimensions significantly larger than 3
where it is no longer related to the BMB phenomenon.
A full study of this FP at finite and infinite N , together
with other nontrivial ones, will be given in a forthcoming
publication.

Finally, let us notice that the exact value of ↵BMB can
be computed from the N = 1 analysis. The e↵ective
potentials of the FPs along the BMB line are all regular
at small �̃ [6, 7, 9] and it is only from the BMB FP
that the potentials start showing a singularity at small
fields. This has been shown to occur for �̃1

+ = 2 = �BMB

[1, 6, 7, 21]. Provided that Eq. (1) is exact at order 1/N ,
the corresponding exact value of ↵ is ↵BMB = 12� ⇡2 '
2.13. Let us notice that whereas the LPA value of ↵c is
not too far from the exact value – 3.375 instead of 3.65 –
the LPA value of ↵BMB is quantitatively o↵ by a factor
4: It is 0.51 instead of 2.13.

To conclude, we have found at N = 1 and d = 3 that
the usual, regular, BMB line represents only half of the
full BMB line which is made of both regular and singu-
lar FPs. In the Wilson-Polchinski RG framework, the
singular branch of this line consists of FPs whose poten-
tial V̄ (%̄) starts at small field by a linear part followed
at larger fields by a regular tricritical potential. At the
points %̄0 where these two parts connect, these singular
FP potentials show a cusp. The BMB FP is the pivotal
point between the regular branch of the BMB line and
the singular branch. All FPs of the BMB line, either reg-
ular or singular, are the limits of FPs existing at finite N
with the subtlety that the N ! 1 limit should be taken
together with d ! 3, letting ↵ = (3 � d)N fixed.More
precisely, the regular branch of the BMB line is obtained
as the limit of two sets of FPs, A2(↵) and Ã3(↵). The sin-
gular branch is the limit of two other sets of FPs, namely
SA3(↵) and SÃ4(↵), whose potentials show a boundary
layer at finite N that becomes a cusp at N = 1. At
large N , all these FPs exist on finite intervals of d.

Our analysis of the BMB phenomenon raises several
questions that we now list. First, the value of ↵BMB

found at the LPA is quantitatively rather poor compared
to other quantities determined at the same order [42, 49].
A study at the next order of the derivative expansion
shows that it improves as well as ↵c and that it can be
further improved by studying the dependence of these
numbers on the choice of regulator function Rk(q) [50–
54]: This will be the subject of a forthcoming publication
[55]. Another challenge is to follow all FPs in the whole
(d,N) plane and more precisely at moderate and small
N . This study has been partly done in [25] and will
be fully clarified in a forthcoming publication. It would
also be interesting to know whether the same BMB phe-
nomenon occurs for all multicritical FPs of the O(N)
models around their respective upper critical dimensions
and whether it exists generically for models di↵erent from
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0 ) and
V̄ 0(%̄+0 ) across the boundary layer, as expected. Notice
that the existence of a boundary layer cannot be found by
usual perturbative means that assume that the rescaling
of % and of the potential by a factor of N –which leads
to the usual scaling of � in Eq. (1)– does not depend on
the value of %.

Now that we have shown that the potentials of the
SA(⌧) FPs have a possible extension at finite N , we have
to study on which interval of dimensions d = 3 � ↵/N
these FPs exist. The crucial remark here is that the
potential of SA(⌧) is identical to that of A(⌧) for %̄ >
%̄0(⌧) and in particular at %̄ = 1. For these values of %̄,
the argument used to connect the FPs A2(↵) and Ã3(↵)
found at finite N to the FPs A(⌧1) and Ã(⌧2) at N =
1 can be repeated for the singular FPs. It yields the
same conclusion: There exists two FPs at finite N whose
limits are SA(⌧1) and SÃ(⌧2). These FPs are of course
those that were found numerically, that is, SÃ4(↵) and
SA3(↵) and the relation between ↵ and ⌧ is again given
by Eq. (9). At asymptotically large N , the two FPs
SA3(↵) and SÃ4(↵) must therefore collide on the same
line dc(N) = 3 � ↵c/N as A2(↵) and Ã3(↵). Since for
⌧ = ⌧BMB, SÃ = Ã = BMB FP, we must have at large N :
SÃ4(↵BMB) = Ã3(↵BMB). Therefore, at largeN , SÃ4(↵)
exists only on the interval: ↵ 2 [↵BMB,↵c]. All these

results prove analytically what was empirically found in
our numerical analysis. [The numerical analysis makes
easy the determination of the number of infrared unstable
directions for each FP]. As for SA3, we have been able
to follow it up to dimensions significantly larger than 3
where it is no longer related to the BMB phenomenon.
A full study of this FP at finite and infinite N , together
with other nontrivial ones, will be given in a forthcoming
publication.

Finally, let us notice that the exact value of ↵BMB can
be computed from the N = 1 analysis. The e↵ective
potentials of the FPs along the BMB line are all regular
at small �̃ [6, 7, 9] and it is only from the BMB FP
that the potentials start showing a singularity at small
fields. This has been shown to occur for �̃1

+ = 2 = �BMB

[1, 6, 7, 21]. Provided that Eq. (1) is exact at order 1/N ,
the corresponding exact value of ↵ is ↵BMB = 12� ⇡2 '
2.13. Let us notice that whereas the LPA value of ↵c is
not too far from the exact value – 3.375 instead of 3.65 –
the LPA value of ↵BMB is quantitatively o↵ by a factor
4: It is 0.51 instead of 2.13.

To conclude, we have found at N = 1 and d = 3 that
the usual, regular, BMB line represents only half of the
full BMB line which is made of both regular and singu-
lar FPs. In the Wilson-Polchinski RG framework, the
singular branch of this line consists of FPs whose poten-
tial V̄ (%̄) starts at small field by a linear part followed
at larger fields by a regular tricritical potential. At the
points %̄0 where these two parts connect, these singular
FP potentials show a cusp. The BMB FP is the pivotal
point between the regular branch of the BMB line and
the singular branch. All FPs of the BMB line, either reg-
ular or singular, are the limits of FPs existing at finite N
with the subtlety that the N ! 1 limit should be taken
together with d ! 3, letting ↵ = (3 � d)N fixed.More
precisely, the regular branch of the BMB line is obtained
as the limit of two sets of FPs, A2(↵) and Ã3(↵). The sin-
gular branch is the limit of two other sets of FPs, namely
SA3(↵) and SÃ4(↵), whose potentials show a boundary
layer at finite N that becomes a cusp at N = 1. At
large N , all these FPs exist on finite intervals of d.

Our analysis of the BMB phenomenon raises several
questions that we now list. First, the value of ↵BMB

found at the LPA is quantitatively rather poor compared
to other quantities determined at the same order [42, 49].
A study at the next order of the derivative expansion
shows that it improves as well as ↵c and that it can be
further improved by studying the dependence of these
numbers on the choice of regulator function Rk(q) [50–
54]: This will be the subject of a forthcoming publication
[55]. Another challenge is to follow all FPs in the whole
(d,N) plane and more precisely at moderate and small
N . This study has been partly done in [25] and will
be fully clarified in a forthcoming publication. It would
also be interesting to know whether the same BMB phe-
nomenon occurs for all multicritical FPs of the O(N)
models around their respective upper critical dimensions
and whether it exists generically for models di↵erent from
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Ã(⌧2(↵)) are the limits of A2(↵) and Ã3(↵). The con-
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including the last one, must be retained in the large N
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Finding the boundary layer is easier done with V̄ 0(%̄)
rather than with V̄ (%̄) (see section 4 of the Supplemental
Material for details). We define the scaled variable: %̃ =
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SA3(↵) and SÃ4(↵) must therefore collide on the same
line dc(N) = 3 � ↵c/N as A2(↵) and Ã3(↵). Since for
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gular branch is the limit of two other sets of FPs, namely
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are the limits at N = 1 and d = 3 of the SÃ4(↵)
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where the plus sign goes with i = 1 and the minus sign
with i = 2. It is then straightforward to show that this
solution connects smoothly the two values V̄ 0(%̄�

0 ) and
V̄ 0(%̄+0 ) across the boundary layer, as expected. Notice
that the existence of a boundary layer cannot be found by
usual perturbative means that assume that the rescaling
of % and of the potential by a factor of N –which leads
to the usual scaling of � in Eq. (1)– does not depend on
the value of %.

Now that we have shown that the potentials of the
SA(⌧) FPs have a possible extension at finite N , we have
to study on which interval of dimensions d = 3 � ↵/N
these FPs exist. The crucial remark here is that the
potential of SA(⌧) is identical to that of A(⌧) for %̄ >
%̄0(⌧) and in particular at %̄ = 1. For these values of %̄,
the argument used to connect the FPs A2(↵) and Ã3(↵)
found at finite N to the FPs A(⌧1) and Ã(⌧2) at N =
1 can be repeated for the singular FPs. It yields the
same conclusion: There exists two FPs at finite N whose
limits are SA(⌧1) and SÃ(⌧2). These FPs are of course
those that were found numerically, that is, SÃ4(↵) and
SA3(↵) and the relation between ↵ and ⌧ is again given
by Eq. (9). At asymptotically large N , the two FPs
SA3(↵) and SÃ4(↵) must therefore collide on the same
line dc(N) = 3 � ↵c/N as A2(↵) and Ã3(↵). Since for
⌧ = ⌧BMB, SÃ = Ã = BMB FP, we must have at large N :
SÃ4(↵BMB) = Ã3(↵BMB). Therefore, at largeN , SÃ4(↵)
exists only on the interval: ↵ 2 [↵BMB,↵c]. All these

results prove analytically what was empirically found in
our numerical analysis. [The numerical analysis makes
easy the determination of the number of infrared unstable
directions for each FP]. As for SA3, we have been able
to follow it up to dimensions significantly larger than 3
where it is no longer related to the BMB phenomenon.
A full study of this FP at finite and infinite N , together
with other nontrivial ones, will be given in a forthcoming
publication.

Finally, let us notice that the exact value of ↵BMB can
be computed from the N = 1 analysis. The e↵ective
potentials of the FPs along the BMB line are all regular
at small �̃ [6, 7, 9] and it is only from the BMB FP
that the potentials start showing a singularity at small
fields. This has been shown to occur for �̃1

+ = 2 = �BMB

[1, 6, 7, 21]. Provided that Eq. (1) is exact at order 1/N ,
the corresponding exact value of ↵ is ↵BMB = 12� ⇡2 '
2.13. Let us notice that whereas the LPA value of ↵c is
not too far from the exact value – 3.375 instead of 3.65 –
the LPA value of ↵BMB is quantitatively o↵ by a factor
4: It is 0.51 instead of 2.13.

To conclude, we have found at N = 1 and d = 3 that
the usual, regular, BMB line represents only half of the
full BMB line which is made of both regular and singu-
lar FPs. In the Wilson-Polchinski RG framework, the
singular branch of this line consists of FPs whose poten-
tial V̄ (%̄) starts at small field by a linear part followed
at larger fields by a regular tricritical potential. At the
points %̄0 where these two parts connect, these singular
FP potentials show a cusp. The BMB FP is the pivotal
point between the regular branch of the BMB line and
the singular branch. All FPs of the BMB line, either reg-
ular or singular, are the limits of FPs existing at finite N
with the subtlety that the N ! 1 limit should be taken
together with d ! 3, letting ↵ = (3 � d)N fixed.More
precisely, the regular branch of the BMB line is obtained
as the limit of two sets of FPs, A2(↵) and Ã3(↵). The sin-
gular branch is the limit of two other sets of FPs, namely
SA3(↵) and SÃ4(↵), whose potentials show a boundary
layer at finite N that becomes a cusp at N = 1. At
large N , all these FPs exist on finite intervals of d.

Our analysis of the BMB phenomenon raises several
questions that we now list. First, the value of ↵BMB

found at the LPA is quantitatively rather poor compared
to other quantities determined at the same order [42, 49].
A study at the next order of the derivative expansion
shows that it improves as well as ↵c and that it can be
further improved by studying the dependence of these
numbers on the choice of regulator function Rk(q) [50–
54]: This will be the subject of a forthcoming publication
[55]. Another challenge is to follow all FPs in the whole
(d,N) plane and more precisely at moderate and small
N . This study has been partly done in [25] and will
be fully clarified in a forthcoming publication. It would
also be interesting to know whether the same BMB phe-
nomenon occurs for all multicritical FPs of the O(N)
models around their respective upper critical dimensions
and whether it exists generically for models di↵erent from



Summary

• We showed that the BMB line found in d=3 and 
N=∞ has an intriguing origin at finite N. 

• The large N limit in trajectories d=3-α/N allows us 
to find the BMB line. 

• The known BMB line is only the half of the true line 
of FPs and the other half is made of singular FPs.


