The finite N origin of the Bardeen-Moshe-Bander phenomenon and its extension at $\mathrm{N}=\infty$ by singular fixed points

Department of Physics, Kyushu UniversityA, LPTMC, Sorbonne UniversitéB,
Claude Fleming ${ }^{\text {B }}$, Bertrand Delamotte ${ }^{\text {B }}$, Shunsuke Yabunaka ${ }^{\text {A }}$

$\mathrm{O}(\mathrm{N})$ models

- They have played an important role in our understanding of second order phase transitions.
- N-component vector order parameter $\mathrm{N}=1$...Ising, $\mathrm{N}=2 \ldots \mathrm{XY}, \mathrm{N}=3 . .$. Heisenberg Model
- The playground of almost all the theoretical approaches ...Exact solution (2d Ising), Renormalization group ($\mathrm{d}=4$ $\varepsilon, 2+\varepsilon$ expansion), conformal bootstrap,...

Common wisdom on the criticality of $\mathrm{O}(\mathrm{N})$ models (finite N case)

GLW Hamiltonian

$$
\begin{gathered}
\text { tonian } \\
H[\phi]=\frac{1}{2} \int_{x}\left(\nabla \phi_{i}\right)^{2}+U(\phi) \\
U(\phi)=a_{2}\left(\phi_{i}\right)^{2}+a_{4}\left(\phi_{i}\right)^{4}+a_{6}\left(\phi_{i}\right)^{6}+\cdots
\end{gathered}
$$

Below the critical dimension $d_{n}=2+2 / n$, the $\phi^{2 n}$ term becomes relevant around the Gaussian FP (G).

A nontrivial fixed point T_{n} with n relevant (unstable) directions branches from G at d_{n}. (Wilson-Fisher FP, which describes second order phase transition, at $\mathrm{d}=4$ and the tricritical $\mathrm{FP} T_{2}$ at $\mathrm{d}=3 \ldots$..)

Common wisdom on the criticality of

$\mathrm{O}(\mathrm{N})$ models at $N=\infty$

- At $N=\infty$, in generic dimensions $2<\mathrm{d}<4$, only Gaussian (G) and Wilson-Fisher (WF) fixed points (FPs) have been found.
- Exceptional case: At $d_{n}=2+2 / n$, there exists a line of FPs starting from G and it terminates at BMB (Bardeen-Moshe-Bander) FP... A finite-N counterpart exists??

Spontaneous Breaking of Scale Invariance and the Ultraviolet Fixed Point in $\mathbf{O}(N)$-Symmetric $\left(\varphi_{3}^{6}\right)$ Theory

William A. Bardeen, Moshe Moshe, and Myron Bander
Phys. Rev. Lett. 52, 1188 - Publlshed 2 Aprll 1984

```
ABSTRACT
At large \(N_{\text {, }}\) the \(\eta \vec{\varphi}^{6}\) theory is shown to possess a nontrivial ultraviolet fixed point. A new phase is
found where asymptotic scale invariance is spontanecusly broken and a dynamical mass is generated through dimensional transmutation. At the tricritical limit, the spontaneous breaking of an exact scale invariance at Ieading \(N\) results in the formation of a massless composite Goidstone mode, the dilaton. We compare these results to standard \(\frac{1}{N}\) expansion and emphasize the nonperturbative nature of
these phenomena.
```


Bardeen-Moshe-Bander FP

- $d=3, N=\infty$ there exists a line of trictritilal FPs (UV stable) that starts with Gaussian FP and ends with a singular FP that we call BMB FP.
- The BMB FP has small field singularity and scale invariance breaks down at the BMB FP.

Summary of common wisdom and

 a simple paradox (S. Yabunaka and B.
Delamotte PRL 2017)

- What occurs if we follow T_{2} from $\left(d=3^{-}, N=1\right)$ to ($d=2.8, N=\infty$) continuously as a function of (d, N)?

Non perturbative

renormalization group (NPRG)

- Modern implementation of Wilson's RG that takes the fluctuation into account step by step in lowering the cut-off wavenumber k, in terms of wavenumber-dependent effective action Γ_{k}

NPRG equation

NPRG equation (Wetterich, Phys. Lett. B, 1993) is

$$
\begin{gathered}
\partial_{t} \Gamma_{k}[\boldsymbol{\phi}]=\frac{1}{2} \operatorname{Tr}\left[\partial_{t} R_{k}\left(q^{2}\right)\left(\Gamma_{k}^{(2)}[q,-q ; \boldsymbol{\phi}]+R_{k}(q)\right)^{-1}\right] \\
t=\ln (k / \Lambda)
\end{gathered}
$$

Derivative expansion(DE2)

- It is impossible to solve the NPRG equation exactly and we have recourse to approximations,

$$
\begin{aligned}
\Gamma_{k}[\phi]=\int_{x}(& \frac{1}{2} Z_{k}(\rho)\left(\nabla \phi_{i}\right)^{2}+\frac{1}{4} Y_{k}(\rho)\left(\phi_{i} \nabla \phi_{i}\right)^{2} \\
& \left.+U_{k}(\rho)+O\left(\nabla^{4}\right)\right)
\end{aligned} \quad \rho=\phi_{i} \phi_{i} / 2
$$

- Simpler approximations \cdots LPA $(n=0)$, LPA' approximation

$$
\begin{array}{cc}
Y_{k}(\rho)=0 & Z_{k}(\rho)=\bar{Z}_{k} \\
\downarrow \\
& \eta_{t}=-\partial_{t} \log \bar{Z}_{k}
\end{array}
$$

Scaled NPRG equation

- Fixed point is found by nondimensionalized renormalized field

$$
\tilde{\phi}=\sqrt{Z_{k}} k^{\frac{2-d}{2}} \phi \quad \tilde{\rho}=Z_{k} k^{2-d} \rho \quad \tilde{U}_{t}(\tilde{\rho})=k^{-d} U_{k}(\rho)
$$

Litim cutoff $\quad y=\frac{q^{2}}{k^{2}} \quad R_{k}\left(q^{2}\right)=Z_{k} k^{2} y r(y) \quad r(y)=(1 / y-1) \theta(1-y)$

Under LPA,
$\partial_{t} \tilde{U}_{t}(\tilde{\phi})=-d \tilde{U}_{t}(\tilde{\phi})+\frac{1}{2}(d-2) \tilde{\phi} \tilde{U}_{t}^{\prime}(\tilde{\phi})+(N-1) \frac{\tilde{\phi}}{\tilde{\phi}+\tilde{U}_{t}^{\prime}(\tilde{\phi})}+\frac{1}{1+\tilde{U}_{t}^{\prime \prime}(\tilde{\phi})}$.
Rescaled finite N equation

$$
\tilde{U}_{t}=N \bar{U}_{t} \quad \tilde{\phi}=\sqrt{N} \bar{\phi}
$$

$$
\partial_{t} \bar{U}_{t}(\bar{\phi})=-d \bar{U}_{t}(\bar{\phi})+\frac{1}{2}(d-2) \bar{\phi} \bar{U}_{t}^{\prime}(\bar{\phi})+\left(1-\frac{1}{N}\right) \frac{\bar{\phi}}{\bar{\phi}+\bar{U}_{t}^{\prime}(\bar{\phi})}+\frac{1}{N} \frac{1}{1+\bar{U}_{t}^{\prime \prime}(\bar{\phi})}
$$

Polchinski's

parametrization

$$
\begin{gathered}
\tilde{V}(\tilde{\varrho})=\tilde{U}(\tilde{\rho})+\left(\tilde{\phi}_{i}-\tilde{\Phi}_{i}\right)^{2} / 2 \\
\tilde{\varrho}=\tilde{\Phi}_{i} \tilde{\Phi}_{i} / 2=\tilde{\Phi}^{2} / 2 \quad \tilde{\phi}_{i}-\tilde{\Phi}_{i}=-\tilde{\Phi}_{i} \tilde{V}^{\prime}(\tilde{\varrho})=-\tilde{\phi}_{i} \tilde{U}^{\prime}(\tilde{\rho})
\end{gathered}
$$

- With rescaling in terms of $\mathrm{N} \bar{\varrho}=\tilde{\varrho} / N, \bar{V}=\tilde{V} / N$

$$
0=1-d \bar{V}+(d-2) \bar{\varrho} \bar{V}^{\prime}+2 \bar{\varrho} \bar{V}^{\prime 2}-\bar{V}^{\prime}-\frac{2}{N} \bar{\varrho} \overline{V^{\prime \prime}}
$$

Tricritical FP solutions at

 $\mathrm{N}=\infty$ in LPA$$
\bar{\varrho}_{ \pm}=1+\frac{\bar{V}^{\prime}\left(\frac{5}{2}-\bar{V}^{\prime}\right)}{\left(1-\bar{V}^{\prime}\right)^{2}}+\frac{\frac{3}{2} \arcsin \sqrt{\bar{V}^{\prime}} \pm \sqrt{2 / \tau}}{\left(\bar{V}^{\prime}\right)^{-1 / 2}\left(1-\bar{V}^{\prime}\right)^{5 / 2}}
$$

D. F. Litim and M. J. Trott, PRD (2018)

- $\tau=0$ …Gaussian FP

- $\tau \in\left[0, \tau_{\text {BMB }}=32 /(3 \pi)^{2}\right] \quad \cdots$ FPs on the BMB line
- $\tau>\tau_{\text {BMB }} \quad \cdots$ No FP defined for all ϱ

FP structure in finite N

We found two nonperturbative fixed points C_{2} (two-unstable) and C_{3} (three-unstable), which do not coincide with G at any d.

$$
N=N_{c}(d)
$$

T_{2} and C_{3} collide and vanish

$$
N=N_{c}^{\prime}(d)
$$

C_{2} and C_{3} collide and vanish

The two lines meet at $\mathrm{S}=(\mathrm{d}=2.8, \mathrm{~N}=19)$

The line $N=N_{c}(d)$

- We can fit this line as $\mathrm{Nc}_{\mathrm{c}}(\mathrm{d})=3.6 /(3-\mathrm{d})$.
- Pisarski (1982 PRL) and Osborn-Stergiou (2018 JHEP) studied ϕ^{6} theory perturbatively (with $\epsilon=3-d$ expansion) and showed that T_{2} can exist for

$$
N \leq N_{c}^{P T}(d)=\frac{36}{\pi^{2}(3-d)} \simeq \frac{3.65}{(3-d)}
$$

which agrees with our numerical fit within numerical uncertainty.

Shape of effective potential on

$$
N=N_{c}(d)
$$

$$
\begin{aligned}
& \rho
\end{aligned}
$$

- Regular function of ρ. Different from the BMB, which shows a cusp.
- T2=C3 approaches a tricritical FP at $\mathrm{N}=\infty$ on the BMB line in this limit.

Relation between a path to ($\mathrm{d}=3, \mathrm{~N}=\infty$) and the limiting FP on the BMB line

- Let us consider to follow T2 or C3 on a path toward $(\mathrm{d}=3, \mathrm{~N}=\infty): d=3-\alpha / N$
- It approaches a FP on the BMB line and τ is given by

$$
\alpha-36 \tau+96 \tau^{2}=0
$$

- Derivation: We expand the potential as

$$
\bar{V}_{\alpha, N}(\bar{\varrho})=\bar{V}_{\alpha, N=\infty}(\bar{\varrho})+\bar{V}_{1, \alpha}(\bar{\varrho}) / N+O\left(1 / N^{2}\right) .
$$

and impose analyticity of $\bar{V}_{1, \alpha}(\bar{\varrho})$ around $\bar{\varrho}=1$

Plot of τ

as a function of α

More FP structures in

finite N

In preparation

Collision between FPs in finite (but large) N

- A (2-unstable) and \tilde{A} (3-unstable) in $d=3-\alpha_{c} / N$
- \tilde{A} and $S \tilde{A}$ (singular and 4-unstable) in $d=3-\alpha_{B M B} / N$
- $S \tilde{A}$ and $S A$ (singular and 3-unstable) in $d=3-\alpha_{c} / N$

Construction of

singular FPs

Boundary layer analysis

- We define the scaled variable $\tilde{\varrho}=N\left(\bar{\varrho}-\bar{\varrho}_{0}\right)$
- At the leading order of $1 / \mathrm{N}$,

$$
0=1-3 \bar{V}\left(\bar{\varrho}_{0}\right)+\bar{\varrho}_{0} F+2 \bar{\varrho}_{0}\left(F^{2}-F^{\prime}\right)-F .
$$

- The solution is given as

$$
\begin{aligned}
& F(\tilde{\varrho})=V_{1}-V_{2} \tanh \left(V_{2} \tilde{\varrho}\right) \\
& 2 V_{i}=V^{\prime}\left({\overline{\varrho_{0}}}^{-}\right) \pm V^{\prime}\left({\overline{\varrho_{0}}}^{+}\right)
\end{aligned}
$$

Summary

- We showed that the BMB line found in $d=3$ and $\mathrm{N}=\infty$ has an intriguing origin at finite N .
- The large N limit in trajectories $\mathrm{d}=3-\alpha / \mathrm{N}$ allows us to find the BMB line.
- The known BMB line is only the half of the true line of FPs and the other half is made of singular FPs.

