Tensor renormalization group approach to four-dimensional complex ϕ^4 theory at finite density

Shinichiro Akiyama (Univ. of Tsukuba) in collaboration with

D. Kadoh, Y. Kuramashi, T. Yamashita, Y. Yoshimura

Based on arXiv:2005.04645 [hep-lat]

熱場の量子論とその応用 (TQFT2020) 2020.8.24

Tensor renormalization group approach

Tensor Renormalization Group (TRG)

-> A real-space renormalization group to coarse grain tensor networks

Tensor Network (TN)

-> Contractions of the tensors locating on a real space

Procedures

$$\begin{array}{c} \text{TN rep. for } X \\ X \rightarrow & \Sigma_{abcd}...T_{aiw}...T_{bjx}...T_{cky}...T_{dlz}... \\ \\ \text{TRG : Block-spin trans. for } T \\ \approx & \Sigma_{a'b'c'd'}...T'_{a'i'w'}...T'_{b'i'x'}...T'_{c'k'v'}...T'_{d'l'z'}... \end{array}$$

- 1) Construct the TN representation for the target function defined on lattice ex. Partition function, Path integral, n-th moment
- 2) Approximately perform the tensor contraction with TRG

Advantage of TRG approach

Tensor Renormalization Group (TRG) is a deterministic numerical method.

- No sign problem
- The computational cost scales logarithmically w. r. t. the system size
- Direct evaluation of the Grassmann integrals (w/o introducing pseudo-fermions)
- Direct evaluation of the partition functions

TRG has been successfully applied to various 2d or 3d models w/ or w/o the sign problem.

Successful applications

3d Ising model

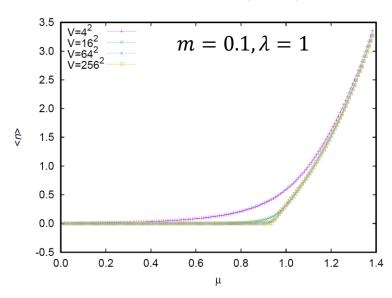
Xie et al, PRB86(2012)045139

Method	T_c
HOTRG (D = 16, from U)	4.511544
HOTRG (D = 16, from M)	4.511546
Monte Carlo ³⁷	4.511523
Monte Carlo ³⁸	4.511525
Monte Carlo ³⁹	4.511516
Monte Carlo ³⁵	4.511528
Series expansion ⁴⁰	4.511536
CTMRG ¹²	4.5788
TPVA ¹³	4.5704
CTMRG ¹⁴	4.5393
TPVA ¹⁶	4.554
Algebraic variation ⁴¹	4.547

-> Good agreement with the Monte Carlo results

2d complex ϕ^4 theory at finite density

Kadoh et al, JHEP02(2020)161



 -> the Silver Blaze phenomenon is successfully confirmed

Today's message

TRG is an effective approach not only in 2d or 3d but also in 4d!

4d complex ϕ^4 theory at finite density

- ✓ a typical system with the sign problem
- ✓ the Silver Blaze phenomenon
 - -> thermodynamic observables at zero temperature are independent of μ up to μ_c
 - Complex Langevin method Aarts, PRL102(2009)131601
 - Thimble approach
 Cristoforetti et al, PRD88(2013)051501
 Fujii et al, JHEP10(2013)147
 - World-line representation
 Gattringer-Kloiber, NPB869(2013)56-73
 - etc ..., and Tensor renormalization group

 This work is the first application of TRG to 4d QFT!!!

TRG in 4d system

- Higher-Order TRG (HOTRG) Xie et al, PRB86(2012)045139
 - ✓ Applicable to any dimensional lattice
 - ✓ Not so economic in 4d lattice
 - -> 4d Ising model on $V=1024^4$ (with parallel computation) SA et al, PRD100(2019)054510
- Anisotropic TRG (ATRG) Adachi et al, arXiv:1906.02007
 - ✓ Also applicable to any dimensional lattice
 - ✓ Accuracy with the fixed computational time is improved compared with the HOTRG
 - -> 4d Ising model on $V = 1024^4$ (with parallel computation) SA et al, PoS(LAT2019)363

We employ the ATRG algorithm in this work

Anisotropic TRG with parallel computation

ATRG is a coarse-graining (direct truncation) method based on SVD

	4d ATRG	4d HOTRG
Memory	$O(D^5)$	$O(D^8)$
Time	$O(D^9)$	$O(D^{15})$

D: bond dimension (singular value matrix is truncated by D)

 $O(D^9)$ calculations in 4d ATRG -> SVD and tensor contraction

Our implementation

	SVD	contraction
Strategy	Randomized SVD	Parallel computing
Time	$O(D^7)$	$O(D^8)$

-> Parallel computation reduces the computational cost from $m{O}(m{D}^9)$ to $m{O}(m{D}^8)$

Tensor network representation (1/2)

- $\checkmark \phi_n = r_n e^{i\pi s_n}$: continuous d. o. f.
- $\checkmark \mu$: chemical potential

$$S_{\text{lat}} = \Sigma_{n \in \Gamma} \left[\left(8 + m^2 \right) r_n^2 + \lambda r_n^4 - 2 \Sigma_{\nu} r_n r_{n+\widehat{\nu}} \cos(\pi s_{n+\widehat{\nu}} - \pi s_n + i \mu \delta_{\nu,4}) \right]$$

To derive a finite dimensional tensor, we need to discretize r_n and s_n :

Continuous d. o. f.	Discrete d. o. f.	Quadrature rule
$r_n \in [0, \infty]$ —	$\rightarrow \alpha_n \in \mathbb{Z}$	Gauss-Laguerre : $\int_0^\infty \mathrm{d}r_n \mathrm{e}^{-r_n} f(r_n) \approx \sum_{\alpha_n=0}^K w_{\alpha_n} f(r_{\alpha_n})$
$s_n \in [-1,1]$ —	$\rightarrow \beta_n \in \mathbb{Z}$	Gauss-Legendre: $\int_{-1}^{1} ds_n f(s_n) \approx \sum_{\beta_n=0}^{K} u_{\beta_n} f(s_{\beta_n})$

-> The partition function Z is approximated by Z(K)

$$Z(K) = \sum_{\{\alpha,\beta\}} \prod_{\nu=1}^{4} M_{\alpha_n \beta_n, \alpha_{n+\widehat{\nu}} \beta_{n+\widehat{\nu}}}^{[\nu]}$$

Tensor network representation (2/2)

SVD separates n-site d. o. f. from $(n + \hat{v})$ -site d. o. f. :

$$\widetilde{U} \coloneqq U\sqrt{\sigma}$$

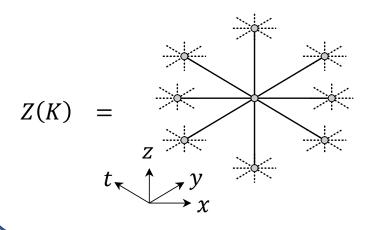
$$\widetilde{V}^* \coloneqq V^*\sqrt{\sigma}$$

$$M_{\alpha_{n}\beta_{n},\alpha_{n+\widehat{\nu}}\beta_{n+\widehat{\nu}}}^{[\nu]} = \Sigma_{l=1}^{K^{2}} \widetilde{U}_{\alpha_{n}\beta_{n},l}^{[\nu]} \widetilde{V}_{\alpha_{n+\widehat{\nu}}\beta_{n+\widehat{\nu}},l}^{[\nu]*} \approx \Sigma_{l=1}^{D} \widetilde{U}_{\alpha_{n}\beta_{n},l}^{[\nu]} \widetilde{V}_{\alpha_{n+\widehat{\nu}}\beta_{n+\widehat{\nu}},l}^{[\nu]*}$$

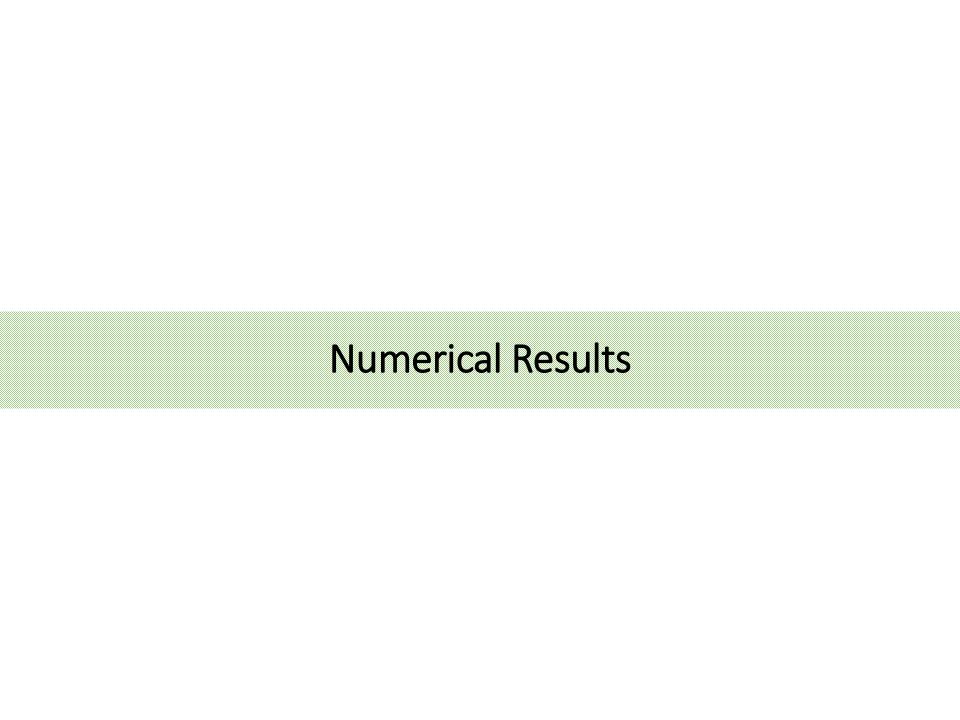
$$(Z(K) = \Sigma_{\{\alpha,\beta\}} \Pi_{\nu=1}^4 M_{\alpha_n \beta_n, \alpha_{n+\widehat{\nu}} \beta_{n+\widehat{\nu}}}^{[\nu]})$$

Tensor network representation: $Z(K) \approx \text{Tr}[\Pi_n T_{x_n y_n z_n t_n x'_n y'_n z'_n t'_n}]$

$$(T_{x_{n}y_{n}z_{n}t_{n}x_{n}'y_{n}'z_{n}'t_{n}'} = \Sigma_{\alpha_{n}=1}^{K} \Sigma_{\beta_{n}=1}^{K} \widetilde{U}_{\alpha_{n}\beta_{n},x_{n}}^{[1]} \widetilde{U}_{\alpha_{n}\beta_{n},y_{n}}^{[2]} \widetilde{U}_{\alpha_{n}\beta_{n},y_{n}}^{[3]} \widetilde{U}_{\alpha_{n}\beta_{n},t_{n}}^{[4]} \widetilde{V}_{\alpha_{n}\beta_{n},t_{n}}^{[1]*} \widetilde{V}_{\alpha_{n}\beta_{n},y_{n}'}^{[2]*} \widetilde{V}_{\alpha_{n}\beta_{n},y_{n}'}^{[4]*} \widetilde{V}_{\alpha_{n}\beta_{n},t_{n}'}^{[4]*})$$



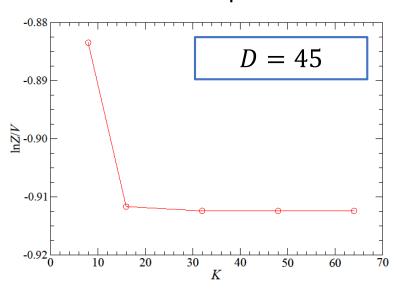
- \checkmark Tensor T locates on each lattice site n
- ✓ Tensor contraction is approximately done by TRG (Tensor network is coarse-grained)



Algorithmic-parameters dependence

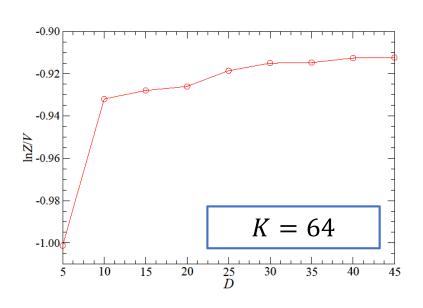
with m = 0.1, $\lambda = 1$, $\mu = 0.6$, L = 1024

Polynomial order in the Gauss quadrature



little K dependence beyond $K \sim 30$

Bond dimension in ATRG



converging around $D \sim 40$

Average phase factor $\left\langle e^{i\theta}\right\rangle_{pq}$

with $m = 0.1, \lambda = 1, K = 64, D = 45$

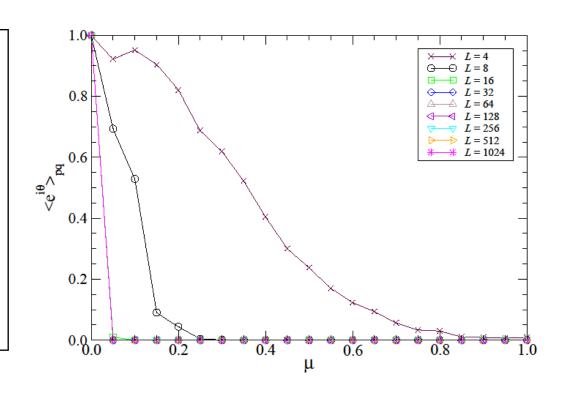
Reweighting in MC

$$Z_{\rm pq} = \int [\mathrm{d}\phi] \, \mathrm{e}^{-\mathrm{Re}(S)}$$

with $e^{-S} = e^{-Re(S)}e^{i\theta}$

$$\langle O \rangle = \frac{\langle O e^{i\theta} \rangle_{pq}}{\langle e^{i\theta} \rangle_{pq}}$$

$$\langle e^{i\theta} \rangle_{pq} = Z/Z_{pq}$$

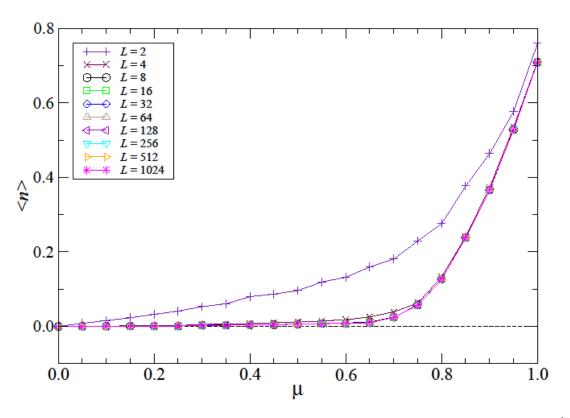


 $\langle e^{i\theta} \rangle_{pq}$ quickly falls off from 1 to 0 beyond $\mu \sim 0.05$

-> difficult to perform a MC simulation on large volume

Particle number density (1/2)

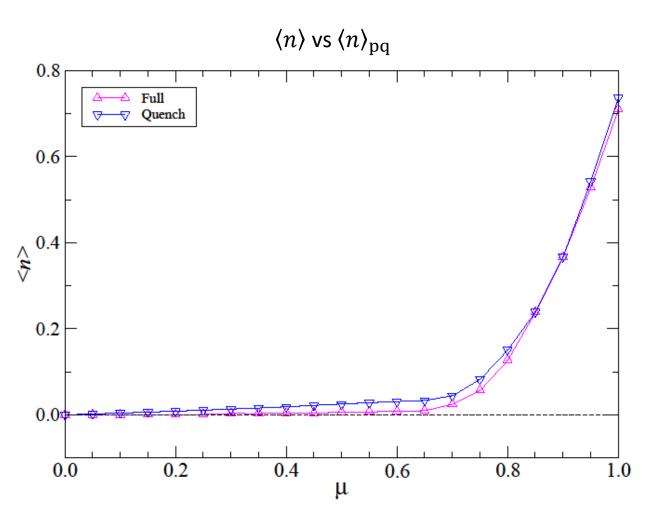
with $m = 0.1, \lambda = 1, K = 64, D = 45$



Resulting $\langle n \rangle$ is qualitatively not bad even in the region with $\left\langle \mathrm{e}^{\mathrm{i}\theta} \right\rangle_{\mathrm{pq}} \sim 0$. $\langle n \rangle$ stays around 0 up to $\mu \approx 0.65$ and shows the rapid increase with $\mu \gtrsim 0.65$ -> The Silver Blaze phenomenon is confirmed

Particle number density (2/2)

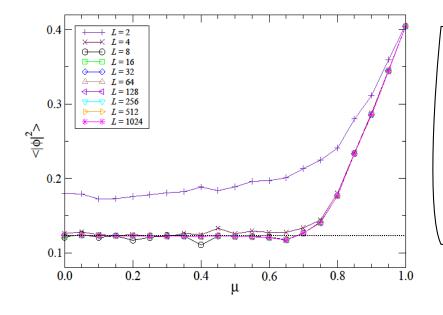
with m = 0.1, $\lambda = 1$, K = 64, D = 45, L = 1024



The Silver Blaze phenomenon is attributed to the imaginary part of S

$\langle |\phi|^2 \rangle$: a discussion of the validity of the numerical results

with
$$m = 0.1, \lambda = 1, K = 64, D = 45$$



$$\frac{\text{Mean-field estimation}}{4 \sinh^2 \frac{\mu_c^{\text{MF}}}{2}} = m^2 + 4\lambda \langle |\phi|^2 \rangle_{\mu=0}$$

$$\text{Aarts, JHEP05(2009)052}$$

$$\downarrow$$

$$\mu_c^{\text{MF}} \approx 0.70$$

 $\langle |\phi|^2 \rangle \approx 0.125$ over $0 \lesssim \mu \lesssim 0.6$

Location of μ_c in the current ATRG calculations seems reasonable

Summary

- This is the first application of TRG approach to 4d QFT
- The Silver Blaze phenomenon (thermodynamic observables at zero temperature are independent of μ up to μ_c) is clearly observed for $\langle n \rangle$ and $\langle |\phi|^2 \rangle$
- The location of μ_c seems reasonable compared with the mean-field value $\mu_c^{\rm MF}$
- TRG approach does not suffer from the sign problem and nicely works to evaluate the observables on almost thermodynamic lattice
- TRG will be an effective numerical approach to other 4d QFTs