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Introduction
The analytic structure of a propagator contains information on the spectrum
and in-medium behavior.

Massive Yang-Mills model: an effective model of the Landau-gauge pure
Yang-Mills theory [Tissier and Wschebor 2011] or QCD [Peláez et al. 2014].

→ We study the analytic structure of the gluon propagator in dense QCD using the
massive Yang-Mills model.

Complex poles of in-medium propagators
In-medium propagator with complex poles: an analytically continued
propagator D(z,~k) from Matsubara frequencies D(z = iωn, ~k) has the
following form

D(z,~k) =

∫ ∞

0

dσ2 ρ(σ,~k)

σ2 − z2
+

n∑
`=1

Z`(~k)

w`(~k)− z2
,

ρ(σ,~k) =
1

π
ImD(σ + iε,~k).

In the vacuum case, such complex poles in the Landau-gauge gluon propagator
have been widely discussed. Complex poles represent deviation from an
observable particle and could be relevant to confinement, since they invalidate
the Källén-Lehmann spectral representation.
The analytic continuation is in principle not unique. However, as a
straightforward generalization of the well-known theorem [Baym and Mermin 1961],
the two conditions
1 D(z)→ 0 as |z| → ∞,
2 D(z) is holomorphic except for the real axis and a finite number of poles.

suffice to determine the correct continuation.

Counting complex poles: Argument principle

NW (C) : =
1

2πi

∮
C

dz2D
′(z)

D(z)
= NZ −NP .

Some relations to spectral function: (under suitable

assumptions)

positive spectral function: NW (C) = 0⇒ NP = NZ.
negative spectral function:
NW (C) = −2⇒ NP = NZ + 2 > 0.
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Massive Yang-Mills model
The Landau gauge Yang-Mills theory (α→ 0) + gluon mass term

LmYM =
1

4
FA
µνF

A
µν +

1

2α
(∂µA

A
µ )2 + c̄A∂µDµ[A]ABcB +

1

2
M 2AA

µA
A
µ

The gluon and ghost propagator agree strikingly
with the lattice results even in the strict one-loop
level.

For some renormalization conditions and
parameters, the running coupling has no Landau
pole in all scales. [Tissier and Wschebor 2011]

This model with dynamical quarks reproduces the
unquenched lattice gluon and ghost propagators
as well. [Peláez et al. 2014].
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A similar model in the Landau-deWitt gauge predicts a sensible deconfinement
temperature. [Reinosa et al. 2014]

At finite µq, the gluon propagator has been compared to the lattice results in
QC2D. [Suenaga and Kojo 2019] (Suenaga-san’s poster)

In the vacuum case (T = µq = 0), we find:

the gluon propagator has a negative spectral function and therefore two
complex poles (NP = 2) for any parameters (g2,M 2).

With NF = 2 dynamical quarks, the gluon propagator has two complex poles
(NP = 2) at the best-fit parameter.
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The gluon propagator at g = 4.1,M = 0.45 GeV, G = SU(3) in a suitable renormalization condition (used in [Tissier

and Wschebor 2011]) in the pure Yang-Mills case. It has one pair of complex poles at k2 = 0.23± 0.42i GeV2

Gluon in the cold quark matter: massive YM at finite µq
We investigate the analytic structure of the gluon propagator D(k0, ~k → 0) at
T → 0, µq > 0 and NF = 2 quarks of mass mq at the best-fit parameter
g = 4.5, M = 0.42 GeV with G = SU(3).

An NP = 4 region appears between mq . µq . 0.8M ≈ 0.33 GeV. In this
region, the gluon propagator has two pairs of complex conjugate poles with
respect to k2

0.

In the NP = 4 region, the gluon propagator has almost real complex poles at
Re k0 ≈ 2µq.

With almost real poles, the real part and imaginary part (to be identified with
the spectral function) of the gluon propagator D(k2

0 + iε) on the real axis have
narrow peaks at k0 ≈ 2µq.

The ratio ωI/ωR of a complex pole k0 = ωR + iωI, (ωR > 0, ωI > 0) tends to
increase as µq increases, except for the almost real poles. (“less particlelike”)
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Modulus of the gluon propagator at mq = 0.13
GeV and µq = 0.25 GeV on the complex k2

0

plane.
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Location of poles k0 = ωR + iωI at mq = 0.13 GeV. (Left) plots of (ωR, ωI) (Right) ωR vs µq
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Real and imaginary parts of the gluon propagator
at mq = 0.13 GeV and µq = 0.25 GeV
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The quark chemical potential significantly affects the gluon propagator around
k0 ≈ 2µq, which is the least energy for the quark-pair production at ~k = 0.

The appearance of the new pair of almost real poles suggests a transition in
the confined dynamics or, if the almost real pole are artifacts, would
correspond to a long-lived quasi-particle at ωR ≈ 2µq.

Summary
The uniqueness of analytic continuation of the Matsubara propagator holds in
a class of functions that vanish at infinity and are holomorphic except for at
most a finite number of complex poles and singularities on the real axis.

At T = µq = 0, in the massive Yang-Mills model (with NF = 0 or with
NF = 2 quarks at the best-fit parameter), an effective theory of the Landau
gauge Yang-Mills theory, the gluon propagator has one pair of complex
conjugate poles in the one-loop level.

The quark chemical potential significantly affects the gluon propagator around
k0 ≈ 2µq. In particular, for mq . µq . 0.8M ≈ 0.33 GeV, the gluon
propagator has a new pair of complex conjugate poles near the real
axis at Re k0 ≈ 2µq and Im k0 ≈ 0. This suggests a transition of confined
degrees of freedom or appearance of quasi-particle at ωR ≈ 2µq.


