Quantum phase transition in 3dim SQED 13 and Lefschetz thimble analysis (work in progress) Takuya Yoda^G

Collaborators: Toshiaki Fujimori^{A,D}, Masazumi Honda^B, Syo Kamata^C, Tatsuhiro Misumi^{D,E,F}, Norisuke Sakai^D Hiyoshi Phys. Keio U.^A, YITP^B, NCBJ^C, RECNS Keio U.^D, Akita U.^E, RIKEN iTHEMS^F, Kyoto U.^G

Abstract

- Quantum phase transition in 3d $\mathcal{N}=4$ SQED is understood from the viewpoint of Lefschetz thimble analysis
- Resurgence structure for large-flavor expansion is discussed
- A class of Borel singularities found in this model should appear universally in large-flavor gauge theories

1. Resurgence and aim of this work

3. Quantum phase transition and Lefschetz thimbles Results

The quantum phase transition is understood as ullet

trivial saddle only \longleftrightarrow infinite number of saddles

Thimble structure for $\lambda < \lambda c$ arg N=-0.025, λ =0.4, m=1

Lefschetz thimble

- "Steepest descents" in configuration $\mathcal{J}_n : \frac{\mathrm{d}\sigma(t)}{\mathrm{d}t} = \frac{\mathrm{d}S}{\mathrm{d}\sigma}$, space
- Changing the phase of parameters, saddles dominant may jump, yielding ambiguities
- The jumps may cause "discontinuity" of free energy

 $\mathcal{K}_n: \frac{\mathrm{d}\sigma(t)}{\mathrm{d}t} = -\frac{\overline{\mathrm{d}S}}{\mathrm{d}\sigma}, \quad \sigma(-\infty) = \sigma_n$

 $\sigma(-\infty) = \sigma_n$

Aim of this work

To describe a phase transition in QFT in terms of resurgence

2. SQED3 and its quantum phase transition Setups

3d $\mathcal{N}=4$ U(1) SUSY gauge theory Model: + 2N hypermultiplets with charge 1

Parameters: FI parameter η and flavor mass m

4. Borel transformation in large-flavor expansion Results

• A class of the Borel singularities should appear universally in large-flavor gauge theories

Borel plane structure

Toy model

- Singularities found for $\lambda > \lambda c$ are captured by a toy model: $S(\sigma) = N \left[-i\lambda\sigma + \ln(\sigma - c) \right]$
- There are infinite number of Borel singularities

Free energy

- Partition function on S^3 can be $Z = \int_{-\infty}^{\infty} \mathrm{d}\sigma \, \frac{e^{-i\eta\sigma}}{\left[2\cosh\frac{\sigma+m}{2} \cdot 2\cosh\frac{\sigma-m}{2}\right]^{N}}$ computed exactly by the SUSY localization method [1,2,3] $\mathrm{d}^2 F$
- The result depends only on η , m $d\lambda^2$ • In the limit $N \rightarrow \infty$ w/ λ =fixed, the second derivative of the free energy jumps [4]

References

- [1] Anton Kapustin, Brian Willett, and Itamar Yaakov. Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter. JHEP, 03:089, 2010.
- [2] N. Hama, K. Hosomichi, and S. Lee, "Notes on SUSY Gauge Theories on Three-Sphere," JHEP 1103 (2011) 127.
- [3] Daniel L. Jafferis. The Exact Superconformal R-Symmetry Extremizes Z. JHEP, 05:159, 2012.
- [4] J. G. Russo and M. Tierz, "Quantum phase transition in many-flavor supersymmetric QED3," Phys. Rev. D 95 no. 3, (2017) 031901.

associated with saddles on infinite number of Riemann surfaces

- Such a structure should appear at least in SUSY observables of large-flavor gauge theories w/
 - $3 \dim \mathcal{N} = 2$ SUSY on S^3 , rank(G)=1
- $2 \dim \mathcal{N} = (2,2)$ SUSY on S^2 , rank(G)=1

- $= \begin{cases} \frac{N}{1+\lambda^2} \left(1 + \frac{\cosh m}{\sqrt{1-\lambda^2 \sinh^2 m}} \right) & \lambda < \lambda_c \\ \frac{N}{1+\lambda^2} & \lambda_c \\ \lambda_c \equiv \frac{1}{\sinh m} & \lambda \ge \lambda_c \end{cases}$ **5.** Conclusion and future works A quantum phase transition in in terms of resurgence • A quantum phase transition in 3d $\mathcal{N}=4$ SQED is discussed in terms of resurgence
 - the phase transition is interpreted as a stokes phenomenon
 - A class of Borel singularities found in this model should appear universally in large-flavor gauge theories
 - Description in terms of resurgence is not yet completed Borel singularities should be found on the positive real axis