Twisted Schwinger effect and geometric effects in quantum tunneling

Takashi Oka ISSP U-Tokyo, Max Planck institute (PKS, CPfS)

Shintaro Takayoshi (PKS→ Konan Univ.) Jianda Wu (TD Lee ins. @ Shanghai Jiao Tong Univ.)

Take home message

Geometric effects in near "adiabatic" time evolution

Solution of the td-Schrodinger equation at slow parameter change

single tunneling approximation

$$|\psi(t)\rangle \simeq \sqrt{1-P} |\psi_n(\boldsymbol{\lambda}(t))\rangle e^{-i\int_0^t dt\varepsilon_n(\boldsymbol{\lambda}(t))} e^{i\tilde{\gamma}_n} + \mathcal{O}(\sqrt{P})$$

Geometric effects in near "adiabatic" time evolution

single tunneling approximation

$$\begin{split} |\psi(t)\rangle \simeq \sqrt{1-P} \psi_n(\pmb{\lambda}(t))\rangle e^{-i\int_0^t dt \varepsilon_n(\pmb{\lambda}(t))} e^{i\tilde{\gamma}_n} + \mathcal{O}(\sqrt{P}) \\ \mathbf{1} \end{split}$$

1. (nonadiabatic) Geometric phase $\tilde{\gamma} = \int_{\lambda_0}^{\lambda_t} d\lambda \langle \psi_n | i \partial_\lambda | \psi_n \rangle + \dots$

Applications: polarization, quantum Hall effect, TI, geometric effect in HHG, ...

2. Nonadiabatic Geometric effect

Berry 1990

Takayoshi, Wu, Oka 2020

also Kitamura Nagaosa Morimoto 2019

Geometric amplitude factors in adiabatic quantum transitions

BY M. V. BERRY

H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, U.K.

Proc. Roy. Soc. London 430, 405 (1990)

 $\boldsymbol{H}(\tau) = (\varDelta \cos \phi(\tau), \varDelta \sin \phi(\tau), A\tau)$

Landau-Zener model

$$\hat{\mathcal{H}}(q) = m\hat{\sigma}^z + vq\hat{\sigma}^x$$
$$q = -Ft$$

Landau-Zener formula $P(F) = \exp\left[-\pi \frac{m^2}{|vF|}\right]$

Derivation by unitary transformation

LZ model with an effective gap

 $\hat{\mathcal{H}}_{\rm LZ} = m_{\rm eff}\hat{\sigma}^z + vq\hat{\sigma}^x$ $m_{\rm eff} = m + \kappa_{\parallel}vF/4$

Twisted Landau-Zener model

$$P(F) = \exp\left[-\pi \frac{(m + \kappa_{\parallel} vF/4)^2}{|vF|}\right]$$

Effective gap depends on the speed F

Rectification: $P(|F|)/P(-|F|) = \exp(-\pi m \kappa_{\parallel}) \neq 1$ for $m \kappa_{\parallel} \neq 0$ **Perfect tunneling:**

 $m_{
m eff}=0$ at $F_{
m PT}=-4m/(\kappa_{\parallel}v)$

Counter diabaticity:

For large |F|, $P(F) = \exp(-\pi \kappa_{\parallel}^2 |vF|/16)$

Takayoshi, Wu, Oka 2020

Schwinger effect

Creation probability (*k*=0)

$$p = \exp\left(-\pi \frac{E_S}{E}\right)$$

Schwinger's work

Heisenberg-Euler Effective Lagrangian

$$\mathcal{L}(A_{ext}) = -i \ln \int D[\psi, \bar{\psi}] e^{i \int d^D x L(A_{ext})}$$
$$= -i \ln \operatorname{Det} \left[i \partial \!\!\!\!/ + i e A - m \right]$$
$$= -i \ln \operatorname{Det} \left[i \partial \!\!\!/ + i e A - m \right]$$

Schwinger 1951

generating function of nonlinear responses

Vacuum decay rate (sum over tunneling channels)

$$2 \operatorname{Im} \mathfrak{L} = \frac{1}{4\pi} \sum_{n=1}^{\infty} s_n^{-2} \exp(-m^2 s_n) \qquad \qquad \text{pair creation} \\ = \frac{\alpha^2}{\pi^2} \mathscr{E}^2 \sum_{n=1}^{\infty} n^{-2} \exp\left(\frac{-n\pi m^2}{e\mathscr{E}}\right). \quad (6.41)$$

Vacuum Polarization

$$X(E) = -\frac{\partial}{\partial E} \operatorname{Re}\mathcal{L}$$

Loschmidt echo and the Heisenberg-Euler Effective Lagrangian
$$\begin{split} \Xi(t) &= \langle \Psi_0(\pmb{\lambda}(t)) | \hat{T} e^{-i\int_0^t H(\pmb{\lambda}(s)) ds} | \Psi_0(\pmb{\lambda}(0)) \rangle e^{i\int_0^t E_0(A(s)) ds} \\ \Xi(t) &\sim e^{it V \mathcal{L}(E)} \\ \text{many-body ground state} \end{split}$$
For dc *E*-field $\mathcal{L}(E) &= -\lim_{t \to \infty} \frac{i}{tV} \ln \langle 0 | \hat{T} e^{-i\int_0^\tau E \hat{X}(s) ds} | 0 \rangle$ \hat{X} : position operator Oka, Aoki 2005

$$\Xi_{\mathbf{k}}(t) = \langle \psi_0(\boldsymbol{\lambda}(t)) | \psi(t) \rangle \simeq \sqrt{1 - P_{\mathbf{k}}} e^{i \tilde{\gamma}_{\mathbf{k}}}$$

Induced polarization = nonadiabatic geometric phase

$$\operatorname{Re}\mathcal{L}(E) = -E \int_{\mathrm{BZ}} \frac{d\mathbf{k}}{(2\pi)^d} \frac{\tilde{\gamma}(\mathbf{k})}{2\pi} \qquad X(E) = -\frac{\partial}{\partial E} \operatorname{Re}\mathcal{L}$$

Schwinger effect = Landau-Zener tunneling

$$Im\mathcal{L}(E) = -E \int_{BZ} \frac{d\mathbf{k}}{(2\pi)^d} \frac{1}{4\pi} \ln[1 - P(\mathbf{k})]$$

Consistent with Schwinger 1951, agrees with the Berry phase theory of polarization Resta, King-Smith Vanderbilt at $E \rightarrow 0$.

Schwinger effect by circularly polarized field

"Twisted Schwinger effect" Tak

Takayoshi, Wu, Oka 2020

 $E = E_0(\cos \Omega t, \sin \Omega t, 0)$

$$\hat{\mathcal{H}} = v[\xi(k_x + eA_x)\hat{\sigma}^x + (k_y + eA_y)\hat{\sigma}^y] + m\hat{\sigma}^z$$

Circularly polarized laser $A(-\sin(\Omega t),\cos(\Omega t),0)$

|k|

eld

 $k_{z_{\star}}$

laser

|k|

2. 3D gapless Dirac system

$$\hat{\mathcal{H}}_{3\mathrm{D}} = v \sum_{j=x,y,z} \hat{\gamma}^0 \hat{\gamma}^j (q_j + eA_j) \qquad \hat{\gamma}^0 = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}, \ \hat{\gamma}^j = \begin{pmatrix} 0 & \hat{\sigma}^j \\ -\hat{\sigma}^j & 0 \end{pmatrix}$$

$$\hat{\mathcal{H}} = v[\xi(k_x + eA_x)\hat{\sigma}^x + (k_y + eA_y)\hat{\sigma}^y] + m\hat{\sigma}^z$$

Circularly polarized laser $A(-\sin(\Omega t),\cos(\Omega t),0)$

"Nonperturbative Valley-selective circular dichroism"

$$\mathcal{P}_{\xi}(\boldsymbol{k}) = \exp\left(-\pi \frac{m_{ ext{eff}}^2}{veE}
ight)$$

$$m_{\text{eff}} = M - \xi \frac{\Omega m}{4M}$$
$$M = \sqrt{v^2 \left(|\boldsymbol{k}| - \frac{eE}{|\Omega|}\right)^2 + m^2}$$

Takayoshi, Wu, Oka 2020

$$\hat{\mathcal{H}} = v[\xi(k_x + eA_x)\hat{\sigma}^x + (k_y + eA_y)\hat{\sigma}^y] + m\hat{\sigma}^z$$

 $\xi \Omega > 0$: Optically allowed $\xi \Omega < 0$: Optically forbidden

Note: <u>Selection rule</u> is replaced by <u>nonadiabatic geometric effects</u>

Total production rate $\Gamma_{\xi} \equiv \frac{|\Omega|}{(2\pi)^3} \int d\mathbf{k} \mathcal{P}_{\xi}(\mathbf{k}) \qquad \stackrel{>}{\underset{\scriptstyle \square}{\sim}} 0.05$ $\gamma = \frac{\mathcal{P}_{+}(\mathbf{k})}{\mathcal{P}_{-}(\mathbf{k})} = \exp\left(\frac{\pi\xi\Omega m}{veE}\right) \qquad \underbrace{\mathbf{0}}_{\mathbf{1}}$

measurable with chiral dichroism

Vanish at $\Omega = 4m$ (for $\xi = 1$) What does this mean?

3D gapless Dirac system

$$\hat{\mathcal{H}}_{3\mathrm{D}} = v \sum_{j=x,y,z} \hat{\gamma}^0 \hat{\gamma}^j (q_j + eA_j) \qquad \hat{\gamma}^0 = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}, \ \hat{\gamma}^j = \begin{pmatrix} 0 & \hat{\sigma}^j \\ -\hat{\sigma}^j & 0 \end{pmatrix}$$

= Two 3D Weyl fermions with ξ =1, -1 = two 2D Dirac ($m \leftrightarrow k_z$) Circularly polarized laser $A(-\sin(\Omega t), \cos(\Omega t), 0)$

"Circular photo-Galvanic effect"

2nd order perturbation theory Chan et al. PRB '17

Q. Ma et al. Nat. Phys. '17

TaAs

3D gapless Dirac system

$$\hat{\mathcal{H}}_{3\mathrm{D}} = v \sum_{j=x,y,z} \hat{\gamma}^0 \hat{\gamma}^j (q_j + eA_j) \qquad \hat{\gamma}^0 = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}, \ \hat{\gamma}^j = \begin{pmatrix} 0 & \hat{\sigma}^j \\ -\hat{\sigma}^j & 0 \end{pmatrix}$$

= Two 3D Weyl fermions with $\xi=1, -1$ = two 2D Dirac ($m \leftrightarrow k_z$)

 $k_z \rightarrow -k_z$ for the Weyl cone with $\xi=-1$

3D gapless Dirac system

scaling parameter $\tilde{A} = veA/|\Omega| = veE/\Omega^2$

Summary

Takayoshi, Wu, Oka 2020

1. Slow is not adiabatic!

$$|\psi(t)\rangle \simeq \sqrt{1-P} \psi_n(\boldsymbol{\lambda}(t))\rangle e^{-i\int_0^t dt\varepsilon_n(\boldsymbol{\lambda}(t))} e^{i\tilde{\gamma}_n} + O(\sqrt{P})$$

2. Twisted Schwinger effect = Nonperturbative optical effect

