Improvement of the SFtX method based on the gradient flow in the study of finite temperature $N_f = 2$

K. Kanaya*, A. Baba*, S. Ejiri¹, M. Kitazawa², H. Suzuki³, Y. Taniguchi^{*}, T. Umeda⁴ [*: U.Tsukuba, 1: Niigata U., 2: Osaka U., 3: Kyushu U., 4: Hiroshima U.]

We study thermodynamic properties of lattice N_f = 2+1 QCD with improved Wilson quarks, adopting the SFtX method (small flow-time expansion method) based on the gradient flow. We study the renormalization scale and 2-loop matching coefficients in the SFtX method in N_f = 2+1 QCD. We find that the μ_0 renormalization scale of Harlander et al. improves the applicability and reliability of the SFtX method. On the other hand, no apparent improvements are seen with the 2-loop matching coefficients on this lattice, while contamination of $O(1/N_t^2)$ discretization errors is suggested at $N_t \leq 10$ in the equation of motion which was assumed in the calculation of Harlander et al.

I. SFtX method based on GF

Gradient flow: modification of fields in terms of a fictitious time t.

 $\dot{B}_{\mu} = D_{\nu}G_{\nu\mu},$ $B_{\mu}|_{t=0} = A_{\mu}$ Narayanan-Neuberger(2006), Lüscher(2009–)

Flowed field $B\mu \approx$ smeared $A\mu$ over a physical range $\sqrt{(8t)}$. Operators of flowed fields have no UV divergences nor short-distance Lüscher-Weisz (2011) singularities at t > 0.

SFtX method: a general method to correctly calculate any renormalized observables on the lattice

H. Suzuki, PTEP 2013, 083B03 (2013) [E:2015, 079201]

We are applying the SFtX method to 2+1 flavor QCD with improved Wilson guarks. The SFtX method removes difficulties associated with the chiral violation.

2. QCD with heavy u,d and physical s

Taniguchi et al., PRD96, 014509 (2017); D95, 054502 (2017), D99, 059904(E) (2019)

As the first systematic application of the method to QCD with dynamical quarks, we first studied the case that u and d quarks are heavier than their physical masses.

- \mathbf{M} N_F=2+1 QCD, Iwasaki gauge + NP-O(*a*)-improved clover
 - **i** fine lattice $a \approx 0.07$ fm ($\beta = 2.05$), slightly heavy ud ($m_{PS}/m_V \approx 0.63$), \approx phys. s.
 - \square CP-PACS+JLQCD *T* = 0 config. (28³x56)
 - \checkmark WHOT-QCD T > 0 fixed-scale config.set (32³xNt, Nt = 4, 6, ..., 16)

 \checkmark Disagreement at T \geq 350 MeV attributed to *a*indep. lattice artifacts of $O((aT)^2 = 1/Nt^2)$ at $Nt \le 8$.

- Chiral susceptibility (disconnected)
 - \checkmark Clear peak at $T_{\rm PC} \approx 190 \,{\rm MeV}$ as expected from Polyakov loop, in spite of the chiral violation due to the Wilson guark action.

➤ Topological susceptibility

- Gluonic and fermionic definitions agree, even at $a \neq 0$ and with Wilson-type quarks!
- 🛠 Power-low behavior consistent with DIGA.

The renormalization scale of the matching coefficients in the SFtX method has a freedom to choose its value μ within a range. Besides

the conventional $\mu_d = 1/\sqrt{(8t)}$, we test a new scale $\mu_0 = 1/\sqrt{(2e^{\gamma}t)}$, which may extend signal to larger t.

We find that the μ_0 -scale

- is consistent with the μ_d -scale,
- improves the signal at large t,
- extends the stability and

applicability of the SFtX method.

3.2 Two-loop matching coefficients

We have been using 1-loop matching coefficients of Makino and Suzuki (2014). Recently, Harlander et al. calculated 2-loop coeff.'s for EMT, using equation of motion (EoM) for quarks (2018). Use of 2loop coeff.'s may improve data at small intermediate t.

In our test, we find that the 2-loop

- is consistent with 1-loop besides the effects of EoM,
- shows no apparent improvement on our fine lattice,
- suggests EoM gets $O(1/N_t^2)$ artifacts at $N_t \leq 10$.

4. QCD with physical u, d, s quarks

Kanaya et al., PoS Lattice2019, 088 (2020)

150

200 250 T [MeV]

2 loop

1 loop, w EoM

12

10

 T^4

3p

1 loop, w/o EoM

T-integral

300

Extending the study in 2+1 flavor QCD with heavy u,d quarks, we are generating config.'s at the physical point on a slightly coarser lattice:

- \checkmark N_F=2+1 QCD, Iwasaki gauge + NP-O(*a*)-improved clover
- Semi-fine lattice $a \approx 0.09$ fm ($\beta = 1.9$), physical u,d,s
- \blacksquare PACS-CS *T* = 0 config. (32³x64), fine-tuned to phys.pt. on-going \square WHOT-QCD T > 0 fixed-scale configs. (32³xNt, Nt = 4, 5, ..., 18,
- *T*≈122-549MeV)

3.5e-05 3e-05 2.5e-0 2e-05 1.5e-05 1e-05 5e-06 100 200 300 400 500 600 T (MeV) gluonic (T/T_{pc})^{-7.2(0.9)} fermionic ≈ 1×10 1×10

Consistency among different methods suggests our lattice is fine enough. The SFtX method works well.

3. Improvement of the SFtX method Taniguchi et al., PRD102, 014510 (2020)

In the application of the SFtX method to QCD at physical u, d, s quark masses (physical point QCD) and other more complicated observables, we found that we need to improve the method.

Besides generating finite-temperature configurations at the physical point, we carried out tests of the renormalization scale and 2-loop matching coefficients in the SFtX method, using the heavy u, d configurations. We found that a proper choice of the renormalization scale extends the stability and applicability of the SFtX method much.

We find that the μ_0 -scale improves well.

Our preliminary results at the physical point, using 1-loop matching coeff.'s with the μ_0 -scale, suggest:

 \Rightarrow e+p \approx KS (cont. lim.), e-3p \approx 3 * KS but with large errors. \Rightarrow u,d show a sharper chiral trans. than s. $\Rightarrow T_{pc}^{phys} < 157 \text{ MeV}$ \Rightarrow T \approx 122-157 MeV may be critical (cf.) $T_{pc}^{phys} = 156.5 \pm 1.5 \text{ MeV}$ Bazavov et al. PLB795, 15 (2019), HISQ

Need more statistics at low T's. Need continuum extrapolation too.

2020/8/24 @ 熱場 online

Improvement of the SFtX method based on the gradient flow in the study of finite temperature $N_f = 2+1$ QCD

WHOT-QCD Collaboration:

K.Kanaya*, A.Baba*, S.Ejiri¹, M.Kitazawa², H.Suzuki³, Y.Taniguchi*, T.Umeda⁴

*Univ.Tsukuba, ¹Niigata Univ., ²Osaka Univ., ³Kyushu Univ., ⁴Hiroshima Univ.

SFtX method based on GF Gradient Flow: a gauge-inv. smearing of fields in terms of a fictitious "time" t. Operators of flowed fields are free from UV divergences nor short-distance singularities. **Small Flow-time eXpansion (SFtX) method**

a general method to correctly calculate any renormalized observables non-perturbatively on the lattice

Because we can construct a lattice operator directly from the continuum operator, this method is applicable also to observables whose base symmetry is broken on the lattice (Poincaré inv., chiral sym., etc.)

🗢 energy-momentum tensor

⇒ QCD with Wilson-type quarks, to cope with problems due to chiral violation.

Our first test of SFtX with dynamical quarks

0.5

0

1.5

1

T/T_{pc}

2

2.5

Power low consistent with a prediction of Dilute Instanton Gas model.

Taniguchi et al., Phys. Rev. D 96, 014509 (2017); Phys. Rev. D 95, 054502 (2017)

Improvement of the SFtX method

Taniguchi et al., Phys. Rev. D 102, 014510 (2020)

We need to improve the method for application on a coarser lattice and/or more complicated operators.

Here, we test improvements in the **matching coefficients**, which matches flowed operators at t > 0 to the target observable at t = 0 using perturbatively known properties and thus makes the $t \rightarrow 0$ extrapolation smoother.

Choice of the renormalization scale

2-loop matching coefficients are now available for EMT.

We find that the μ_0 -scale

- is consistent with the μ_d -scale
- improves the signal at large t,
- extends the stability and applicability of the SFtX method.

2-loop matching coefficients

Harlander-Kluth-Lange, EPJC 78:944 (2018)

Equation of Motion (EoM) for quarks used in their calculation to reduce # of mixing operators.

We find that the 2-loop results

- are consistent with I-loop besides the effects of EoM,
- show no apparent improvement on our fine lattice,
- suggest: EoM gets $O(1/N_t^2)$ artifacts at $N_t \le 10$.

Details as well as application to the physical point QCD are discussed in the poster.