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Definition

Ultracold atoms (~ 10° K)
= nonrelativistic
point-like particles
with short-range interactions

Extreme QCD (~ 1012 K)
= relativistic quarks
with gauge interactions



Plan of this talk

1. “Hard probes” in cold atoms

- Use of energetic atoms to locally probe
strongly-interacting atomic gases

- Y.N., Phys. Rev. A (2012) [arXiv:1110.5926]

2. “Quark-hadron continuity” in cold atoms

- Smooth crossover from atoms to trimers
in 3-component Fermi gases

- Y.N., Phys. Rev. Lett. (2012) [arXiv:1207.6971]



“Hard probes”
in cold atoms



XQCD vs. cold atoms

* Elliptic flow « Small shear viscosity
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XQCD vs. cold atoms

* Elliptic flow « Small shear viscosity
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.~ Whatis its analogue in cold atoms ?



Probe atomic gas with atoms

Shoot a probe atom into the target atomic gas
and measure its differential scattering rate

©
probe atom target 6
@ atomic
gas
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What can we learn from the scattering data
on the (strongly-interacting) target atomic gas ?
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Probe atomic gas with atoms

Shoot a probe atom into the target atomic gas
and measure its differential scattering rate

k-1

Large k > n'3 = Few-body scattering problems
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Leading contribution

Shoot a probe atom into the target atomic gas

and measure its differential scattering rate
v
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Large k > n'3 = Few-body scattering problems
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Sub-leading contribution

Shoot a probe atom into the target atomic gas

and measure its differential scattering rate
v

k-1
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Large k > n'3 = Few-body scattering problems
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What is “C” ?

Probability of finding 2 particles at small separation

* noninteracting gas : (i (r)n(0)) = n?

G
¢ i ‘ . (n(r)n(0)) —
interacting gas : (n(r)n(0)) anirl)?
o n?R3
= — |r|<R<n(r)n(O)> N{ CR

Anomalously enhanced probability is
quantified by the “contact density” C

Important characteristic of strongly-int atomic gases



Ir

Home About

Loading [MathJax|/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Physics

spotlighting exceptional research

Browse APS Journals

Viewpoint: How the tail wags the dog in ultracold atomic
gases

Eric Braaten, Department of Physics, Ohio State University, Columbus, OH 43210 USA and and Bethe Center for Theoretical
Physics, University of Bonn, Bonn, Germany

Published February 2, 2009 | Physics 2, 9 (2009) | DOI: 10.1103/Physics.2.9

Recent calculations of the properties of ultracold atoms have revealed how two-body interactions at very short
distances determine essential properties of many-body systems.

The development of the field of ultracold atoms has opened up new
frontiers in both few-body and many-body physics. Of particular interest
“lonly to various

Universal properties of the ultracold Fermi gas

Shizhong Zhang and Anthony J. Leggett
Phys. Rev. A 79, 023601 (2009)

Viewpoint: Fermi gases as a test bed for strongly interacting
systems

Daniel E. Sheehy, Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA
Published June 7, 2010 | Physics 3, 48 (2010) | DOI: 10.1103/Physics.3.48

A new perspective on strongly interacting fermions emerges from the experimental confirmation of a universal formula.

Some of the most vexing present-day problems in physics center on
understanding the many-body properties and phases of strongly
interacting fermions. Part of the difficulty arises from the fact that while

Verification of Universal Relations in a
Strongly Interacting Fermi Gas

J T Stewart J P Gaebler T E. Drake. and
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Formulations a la OPE

e scatteringrate: I'(k) = —2Im X (k)

: dI'(k)
 optical theorem : I'(k) = fdﬂ —

w6 = [dee (T y@)$!(0)
:ZAz(k)<Oz>
n=(ply), €= (@), ...

Lowest few O; are needed at large k

— ~ Systematic large-k expansion !



Differential scattering rate

Many-body physics

[

Few-body physics

r

Few-body physics plays an important role
to probe many-body physics !

~




Differential scattering rate

dl'(k) n C
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Differential scattering rate

dl'(k)
149

For zero-range interactions

f(0) =
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Backward scattering rate measures contact density

— ~ New local probe of strongly-int atomic gases



Differential scattering rate
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Azimuthal (¢) anisotropy reveals
==~ currents in many-body states
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Differential scattering rate
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How large is large ?

— ny C ek
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Reasonable agreement even at k/kr>1.5!



Ultracold atom “colliders”
Duke (2011) NIST (2012)

C Schematic of scattering halo

MIT (2011)
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Ultracold atom “colliders”

“A laser based accelerator for ultracold atoms”

University of Otago
(New Zeeland)

Optics Letters (2012)



Short summary

- Energetic atoms = New tool to locally
probe strongly-interacting atomic gases

- Systematic large-k expansions are possible

v backward scattering = contact density
v azimuthal anisotropy = current density
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Short summary

- Energetic atoms = New tool to locally
probe strongly-interacting atomic gases

- Systematic large-k expansions are possible

v backward scattering = contact density
v azimuthal anisotropy = current density

- Close connection to nuclear/particle physics
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Short summary

- Energetic atoms = New tool to locally
probe strongly-interacting atomic gases

- Systematic large-k expansions are possible

v backward scattering = contact density
v azimuthal anisotropy = current density

- Close connection to nuclear/particle physics

C - “Hard probes” are
‘ useful to reveal
short-range pair
- correlations

/ " poth in atomic gases
C pron o e and nuclei (QGP?)




“Quark-hadron continuity”
In cold atoms



BCS-BEC crossover

e 2-component Fermi gas

loosely bound Cooper pairs tightly bound dimers

Jin Group at JILA



BCS-BEC crossover

e 3-component Fermi gas

loosely bound Cooper pairs tightly bound dimers
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BCS-BEC crossover

e 3-component Fermi gas

loosely bound Cooper pairs tightly bound dimers
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unpaired atoms unpaired timers

[“Atom-trimer continuity” = New crossover physics ! ]




3-component Fermi gas

3 spin states (i=1,2,3) of °Li atoms
near a Feshbach resonance:
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K. M. O’Hara, New J. Phys. (2011)



3-component Fermi gas

3 spin states (i=1,2,3) of °Li atoms
near a Feshbach resonance:
—1
1

ik + =
a

f(k) =

ai2=azz=az1 = SU(3)xU(1) invariance

£= w*(zat+ )wz+ il apap;

* Problem! 3 fermions form an infinitely deep &
bound state (Thomas collapse) g™~

4

.~ No many-body ground state :-(



3-component Fermi gas

3 spin states (i=1,2,3) of °Li atoms
near a “narrow” Feshbach resonance:

=1 -1
f(k) = I (k)
ik + % 4 ik + 1 + Rk?
ref — — 2R is the effective range

* R regularizes short-distance behaviors
(= no Thomas collapse)

— ~ Universal many-body ground state
(depends only on a, R, kf)



Phase diagram
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Phase diagram
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Phase diagram
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Phase diagram
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Phase diagram
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Phase diagram
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Phase diagram
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Phase diagram
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Phase diagram
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[ “Atom-trimer continuity” = New crossover physics ! ]
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Continuity of Quark and Hadron Matter

Thomas Schifer and Frank Wilczek

School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540
(Received 30 November 1998)

We review, clarify, and extend the notion of color-flavor locking. We present evidence that for three
degenerate flavors the qualitative features of the color-flavor locked state, reliably predicted for high
density, match the expected features of hadronic matter at low density. This provides, in particular,
a controlled, weak-coupling realization of confinement and chiral symmetry breaking in this (slight)

idealization of QCD. [S0031-9007(99)09191-7]

PACS numbers: 12.38.Aw

In a recent study [1] of QCD with three degenerate fla-
vors at high density, a new form of ordering was predicted,
wherein the color and flavor degrees of freedom become
rigidly correlated in the ground state: color-flavor locking.
This prediction is based on a weak-coupling analysis us-
ing a four-fermion interaction with quantum numbers ab-
stracted from one gluon exchange. One expects that such
a weak-coupling analysis is appropriate at high density, for
the following reason [2,3]. Tentatively assuming that the
quarks start out in a state close to their free quark state,
1.e., with large Fermi surfaces, one finds that the relevant
interactions, which are scattering the states near the Fermi
surface, for the most part involve large momentum trans-

vor quantum numbers, including integral electric charge.
Thus, the gluons match the octet of vector mesons, the
quark octet matches the baryon octet, and an octet of col-

lective modes associated with chiral symmetry breaking
matches the pseudoscalar octet. However, there are also
a few apparent discrepancies: there is an extra massless
singlet scalar, associated with the spontaneous breaking of
baryon number (superfluidity); there are eight rather than
nine vector mesons (no singlet); and there are nine rather
than eight baryons (extra singlet). We will argue that these
“discrepancies” are superficial — or rather that they are fea-
tures, not bugs.

Let us first briefly recall the fundamental concepts of

[ New link between atomic and nuclear systems !

tivity [4], even weak couplings near the Fermi surface can

form [11



Mean-field + trimer model

() MF+T — () mean field T Y trimer
knows correct asymptotic behaviors
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Critical temperature

A pair of quantum critical points
(complete depletion of SF) appear for R.kr<0.38
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Summary of this talk

1. “Hard probes” in cold atoms

- Use of energetic atoms to locally probe
strongly-interacting atomic gases

- Y.N., Phys. Rev. A (2012) [arXiv:1110.5926]

2. “Quark-hadron continuity” in cold atoms

- Smooth crossover from atoms to trimers
in 3-component Fermi gases

- Y.N., Phys. Rev. Lett. (2012) [arXiv:1207.6971]



Summary of this talk

New ideas wanted !



