11:55 - 12:20

1/19

基研研究会「熱場の量子論とその応用」 Monday, September 2nd, 2019 @Yukawa Institute for Theoretical Physics, Kyoto University

<u>Collaborators</u>

1/19

Prof. Yusuke Nishida Tokyo Tech

Prof. Shina Tan Peking Univ./Georgia Tech

Y. Sekino, S. Tan, & Y. Nishida, Phys. Rev. A 97, 013621 (2018)Y. Sekino, & Y. Nishida, in progress

2/19

1. Introduction:

Universality near resonance & properties in 1D

Universal relations for 1D bosons & fermions near
 2-body resonances

Y. Sekino, S. Tan, & Y. Nishida, Phys. Rev. A 97, 013621 (2018)

1. Introduction:

Universality near resonance & properties in 1D

Universal relations for 1D bosons & fermions near
 2-body resonances

Y. Sekino, S. Tan, & Y. Nishida, Phys. Rev. A 97, 013621 (2018)

<u>Ultracold atoms</u>

Coldest systems in the universe !! $T = 1 \mu K \sim 10 nK$

High controllability of ultracold atoms

Statistics & internal d.o.f by atomic species and isotopes

Bosons (⁷Li, ²³Na, ³⁹K, ⁴¹K,...) Fermions (⁶Li, ⁴⁰K, ¹⁷³Yb, ...)

Figure 1. Hyperfine energy level diagram of D_2 transition in ³⁹K and ⁴⁰K.

Gokhroo, et.al., (2011)

<u>High controllability of ultracold atoms</u>

- Statistics & internal d.o.f by atomic species and isotopes
- Control of parameters
- Spatial geometry

Feshbach resonance \rightarrow Interaction

Regol and Jin, PRL (2003)

Highly controllable systems

Ideal ground to study universal physics near resonance

Universalities near resonances

1D systems near resonances

<u>Bose-Fermi correspondence (1)</u>

Correspondences of

$$Z_B = Z_F = Z = \sum_E e^{-E/k_B T}$$

Thermodynamics

$$|\Psi_B|^2 = |\Psi_F|^2 = |\Psi|^2$$

Density correlations in cord. space

<u>Bose-Fermi correspondence (2)</u>

Correspondences of

$$Z_B = Z_F = Z = \sum_E e^{-E/k_B T}$$

Thermodynamics

$$|\Psi_B|^2 = |\Psi_F|^2$$

Density correlations in cord. space

9/19

1. Introduction:

Universality near resonance & properties in 1D

Universal relations for 1D bosons & fermions near
 2-body resonances

Y. Sekino, S. Tan, & Y. Nishida, Phys. Rev. A 97, 013621 (2018)

Purpose of our study

10/19

1D bosons near an even-wave resonance an odd-wave resonance

How does similarity and difference appear in **universal properties** b/w bosons & fermions ??

– Universal relations

- \checkmark Exact constraints for any (a, T, n)
- Characterized by quantities called "contact(s)"

Tan, Ann. Phys. (2008).

Universal relations for bosons

11/19

Universal relations for bosons

12/19

✓ Tail of momentum distribution (MD):

$$\rho_B(k) = \left\langle \tilde{\psi}_k^{\dagger} \tilde{\psi}_k \right\rangle = \frac{4C_2}{a^2 k^4} + O(1/k^5) \qquad \mathsf{r}_0 \triangleleft \mathsf{k}^{-1} \triangleleft \mathsf{\lambda}_\mathsf{T}, \, \mathsf{n}^{-1}, \, |\mathsf{a}|$$

✓ Adiabatic relation:

$$\left(\frac{dE}{da^{-1}}\right)_S = -\frac{C_2}{m}$$

Lieb & Liniger, Phys. Rev. (1963).

Olshanii & Dunjko, PRL (2003).

✓ Energy relation (ER):

$$E = \int \frac{dk}{2\pi} \frac{k^2}{2m} \rho_B(k) - \frac{C_2}{ma}$$

Valiente, Europhys. Lett. (2012).

2-body contact C2

Comparison b/w bosons & fermions

 $\rho_B(k) = \frac{4C_2}{a^2k^4} + O(1/k^5)$ (boson) ✓ Tail of MD $(r_0 \leftrightarrow k^{-1} \leftrightarrow \lambda_T, n^{-1}, |a|)$: $\rho_F(k) = rac{4C_2}{k^2} + O(1/k^3)$ (fermion) Cui, PRA (2016)

✓ Adiabatic relation:

$$\left(\frac{dE}{da^{-1}}\right)_S = -\frac{C_2}{m}$$
 (boson & fermion)

13/19

$$\checkmark \text{ ER: } E = \int \frac{dk}{2\pi} \frac{k^2}{2m} \rho_B(k) - \frac{C_2}{ma} \qquad \text{(boson)}$$

$$E = \int \frac{dk}{2\pi} \frac{k^2}{2m} \left(\rho_F(k) - \frac{4C_2}{k^2} \right) + \frac{C_2}{ma} + \frac{2C_3}{m} \qquad \text{(fermion)}$$

$$YS, \text{ Tan, \& Nishida PRA (2018)}$$

3-body contact C_3

RG analysis in QFT!!

14/19

1. Introduction:

Universality near resonance & properties in 1D

Universal relations for 1D bosons & fermions near
 2-body resonances

Y. Sekino, S. Tan, & Y. Nishida, Phys. Rev. A 97, 013621 (2018)

18/19

1. Introduction:

Universality near resonance & properties in 1D

Universal relations for 1D bosons & fermions near
 2-body resonances

Y. Sekino, S. Tan, & Y. Nishida, Phys. Rev. A 97, 013621 (2018)

<u>Summary</u>

Universal relations are

- 1. Exact constraint for any parameters
- 2. Characterized by C_2 & C_3 , which are identical b/w bosons & fermions