Computer studies of fluctuation of confined fluid

Kyoto Univ. Hiroyoshi Nakano

熱場の量子論 2019/9/4 in collaboration with Shin-ichi Sasa

Boundary condition on Navier-Stokes equation

Macroscopic behavior of fluids is described by NS equation.

incompressible fluid $\longrightarrow \rho = \text{const}$ $\nabla \cdot \boldsymbol{v} = 0$ $\frac{\partial \boldsymbol{v}}{\partial t} + (\boldsymbol{v} \cdot \nabla) \boldsymbol{v} = -\frac{1}{\rho} \nabla p + \frac{\eta}{\rho} \Delta \boldsymbol{v}$

Boundary condition

Motion of fluid at solid surface

Motivation for investigation of boundary condition

Surface roughness brings fluid to rest.

Development of nanotechnology from 1990s

- \cdot control of roughness
- increasing of measurement accuracy

(Zhu and Granick, 2001)

New transport coefficient

 Slip length is new transport coefficient that characterizes the amount of slip. (cf. viscosity, thermal conductivity)

 \cdot No-slip BC is a special case of partial slip BC. (b=0)

Application of slip phenomena

Typically, slip length is about $0nm \sim 30nm$

Nano- and Microfluidics

Control and manipulation of fluids at submicron scale

Slip length becomes a new variable to be user-controlled.

Y. Gogotsi et al., Appl. Rhys. Lett. 79, 1021 (2001)

Lab-on-a-chip devices

S. Gawad et al., Lab. Chip 1, 76(2001)

Theme of this presentation

Our goal : to establish relationship between slip length and molecular parameters(wall structure, fluid structure)

Molecular dynamical simulation

Microscopic description: Hamilton's equation

Kirkwood (1946), Zwanzig (1960)

Nakano and Sasa (2019)

GK formula X MD simulation

is very difficult, mainly because of macroscopic limit.

$$\frac{\eta}{b} = \frac{1}{k_B T S} \lim_{t \to \infty} \lim_{L \to \infty} \int_0^t ds \langle \hat{F}_t(s) \hat{F}_t(0) \rangle$$

GK formula X MD simulation

$$\frac{\mathbf{GK formula for slip length}}{\frac{\eta}{b} = \frac{1}{k_B T S} \lim_{t \to \infty} \lim_{L \to \infty} \int_0^t ds \langle \hat{F}_t(s) \hat{F}_t(0) \rangle$$

Calculation method

- 1, prepare equilibrium state at t=0
- 2, calculate microscopic force $\hat{F}(t)$ from snapshot
- 3, calculate force autocorrelation function

$$\langle \hat{F}(t)\hat{F}(0)\rangle_{eq} = \frac{1}{\Delta T}\int_{0}^{\Delta T} ds\hat{F}(t+s)\hat{F}(s)$$

4, calculate time integral

$$\gamma(t) = \frac{1}{k_B T S} \int_0^t ds \langle \hat{F}_t(s) \hat{F}_t(0) \rangle$$

Calculation result

Calculation result

System Size Dependence

System Size Dependence

GK formula is not practical.

New strategy

Our goal : to establish relationship between slip length and molecular parameters(wall structure, fluid structure)

to extract information on slip length from $\gamma(t)$

<u>Tools</u>

Previous studies

New strategy

Our goal : to establish relationship between slip length and molecular parameters(wall structure, fluid structure)

to extract information on slip length from $\gamma(t)$

Fluctuating hydrodynamics

Continuum description of fluctuation

Landau and Lifshitz, 1959

Navier-Stokes equation + fluctuation $\nabla \cdot \boldsymbol{v} = 0$ $\frac{\partial \boldsymbol{v}}{\partial t} + (\boldsymbol{v} \cdot \nabla) \boldsymbol{v} = -\frac{1}{\rho} \nabla p + \frac{\eta}{\rho} \Delta \boldsymbol{v} + \boldsymbol{f}$

Continuum description of fluctuation

Landau and Lifshitz, 1959

Navier-Stokes equation + fluctuation

$$\boldsymbol{\nabla} \cdot \boldsymbol{v} = 0 \frac{\partial \boldsymbol{v}}{\partial t} + (\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v} = -\frac{1}{\rho} \boldsymbol{\nabla} p + \frac{\eta}{\rho} \Delta \boldsymbol{v} + \boldsymbol{f}$$

Fluctuating hydrodynamics

Properties of fluctuation

 $\langle s \rangle$

- 0, Gaussian white noise 1, detailed balance condition
- 2, conserve law of momentum 3, isotropic properties of bulk

$$f^{a}(\boldsymbol{r},t) = \frac{\partial s^{ab}(\boldsymbol{r},t)}{\partial r^{b}}$$
$$^{ab}(\boldsymbol{r}_{1},t_{1})s^{cd}(\boldsymbol{r}_{2},t_{2})\rangle = 2k_{B}T\eta \left(\delta_{ac}\delta_{bd} + \delta_{ad}\delta_{bc} + \frac{2}{3}\delta_{ab}\delta_{cd}\right)\delta(\boldsymbol{r}_{1} - \boldsymbol{r}_{2})\delta(t_{1} - t_{2})$$

Continuum description of fluctuation

Landau and Lifshitz, 1959

Navier-Stokes equation + fluctuation

$$\nabla \cdot \boldsymbol{v} = 0$$

$$\frac{\partial \boldsymbol{v}}{\partial t} + (\boldsymbol{v} \cdot \boldsymbol{v}) \boldsymbol{v} = -\frac{1}{\rho} \nabla p + \frac{\eta}{\rho} \Delta \boldsymbol{v} + \boldsymbol{f}$$

Fluctuating hydrodynamics

Properties of fluctuation

 $\langle s \rangle$

- 0, Gaussian white noise 1, detailed balance condition
- 2, conserve law of momentum 3, isotropic properties of bulk

$$f^{a}(\boldsymbol{r},t) = \frac{\partial s^{ab}(\boldsymbol{r},t)}{\partial r^{b}}$$
$$^{ab}(\boldsymbol{r}_{1},t_{1})s^{cd}(\boldsymbol{r}_{2},t_{2})\rangle = 2k_{B}T\eta \left(\delta_{ac}\delta_{bd} + \delta_{ad}\delta_{bc} + \frac{2}{3}\delta_{ab}\delta_{cd}\right)\delta(\boldsymbol{r}_{1} - \boldsymbol{r}_{2})\delta(t_{1} - t_{2})$$

Fluctuating hydrodynamics × MD simulation

Comparison between simulation data and fluctuating hydrodynamics

Comparison between simulation data and fluctuating hydrodynamics

Parameters

 η : viscosity in bulk, obtained in advance

 $\rho\,$: density in bulk, obtained from simulation data

b : slip length \longrightarrow fitting parameter

Fitting Results

Fluctuating hydrodynamics reproduces simulation data in full time region.

Fluctuation of force acting on wall is characterized by only three parameters (η, ρ, b) .

Fluctuating hydrodynamics reproduces simulation data in full time region.

Fluctuation of force acting on wall is characterized by only three parameters (η, ρ, b) .

Fitting Results

Fluctuating hydrodynamics accurately describes simulation data even in microscopic time scale.

Comparison with non-equilibrium measurement

-0.00002

Slip length is obtained in two different way.

- 1, best-fitting parameter of $\gamma(t)$
- 2, observation of velocity field in non-equilibrium steady state

$c_{ m FS}$	$b_{ m neq}/\sigma$	$b_{ m eq}/\sigma$
0.8	7.5	7.8
0.4	30.5	29.2
0.0	118 ± 7.5	104
I	1	

0

0

Deviations between NEMD and EMD simulations are within 10%.

Our goal : to establish relationship between slip length and molecular parameters(wall structure, fluid structure)

to extract information on slip length from $\gamma(t)$

Green-Kubo-like formula

Exact result of LFH

$$\lim_{t \to +0} \gamma(t) = \frac{\eta}{b}$$

Green-Kubo-like formula

Application to rough wall

in progress

Our goal : to establish relationship between slip length and molecular parameters(wall structure, fluid structure)

 $\frac{\text{Reasonable estimation}}{\gamma_{\text{peak}}} \sim \frac{\eta}{b}$ L. Bocquet and J.-L. Barrat, 1994

Our derivation expands the range of application.

When density of pillars are small, N_p/S (density of pillars) $\gamma_{\text{peak}} = \frac{1}{k_B T S} \int_0^{\tau_0} ds \langle F_t(s) F_t(0) \rangle \simeq \gamma_{\text{plate}} + \frac{N_p}{S} \gamma_{\text{pillar}}$ $b \sim \frac{1}{\frac{1}{b_{\text{plate}}} + \frac{N_p}{S} \frac{\gamma_{\text{pillar}}}{\eta}}$ universal relation

Important conclusions

