理研シンポジウム「熱場の量子論とその応用」2018

「中性子星の中身をどこまで探れるか? 現状と今後の展望」

長瀧天体ビッグバン研究室 主任研究員

数理創造プログラム 副プログラムディレクター

2018年8月29日 理研和光キャンパス

§ 連星系から求める中性子星の 質量と半径

中性子星

天の川銀河で観測される超新星残骸 カニ星雲(1054年)

中性子星(カニパルサー)は点源として見つかる (つまり、大きさは解像出来ない)。 中性子星の想像図 (NASA) 質量 太陽質量の約1.5倍 半径 10km程度 中心密度 10^15 g/cc (1リットルで富士山程度)

中性子星は時々パルサーとして見つかる 中性子星は時々連星系として見つかる

 $f(M_1, M_2, i) = \frac{(M_2 \sin i)^3}{(M_1 + M_2)^2} = \frac{Pv_1^3}{2\pi G}.$ 質量関数 通常、ここまでしか求まらない。

P:軌道周期

v_1: 視線方向ドップラー速度(絶対値) の最大値

- 中性子星-白色矮星連星。
- パルスのシャピロディレイが求まる。

ー般相対論的重力効果 (時間の遅れ)による、 パルス周期変化

白色矮星による重力場が 推定できる。

注:地球が公転面にいる場合 ドップラー効果が最大に 見えるタイミングと位相90度 ずれている。

http://news.discovery.com/space/neutron-star-largest-ever.html

シャピロディレイから求まる 白色矮星の質量と見込み角

J1614-2230 P. B. Demorest et al., NATURE 467 (2010)

2倍の太陽質量の中性子星が存在した!

P. B. Demorest et al., NATURE 467 (2010)

X線バーストを用いて質量・半径を求める

F. Ozel Nature (2006), Steiner et al. (2010),...

X線バーストの例 Sztajno et al. (1987)

伴星から質量(物質)が流れる。 Sztajno et al. (1987) ある段階で核反応を起こし、爆発的に燃える。 ピーク光度は中性子星の重力と放射圧の平衡で決まると考えられる(エディントン光度)。

X線バースト天体の重力赤方偏移発見

EXO 0748-676

Cottam et al. Nature (2002)

3行の連立方程式で質量・半径求めた!

F. Özel Nature (2006)

EXO 0748-676

Observable		Measurement	Dependence on neutron-star properties
F _{Edd}	(2.25 ±	0.23) $\times 10^{-8}$ erg cm ⁻² s ⁻	$\frac{1}{4\pi D^2} \frac{4\pi GMc}{\kappa_{\rm es}} \left(1 - \frac{2GM}{Rc^2}\right)^{1/2}$
Ζ		0.35	$(1 - \frac{2GM}{Rc^2})^{-1/2} - 1$
$F_{ m cool}/\sigma T_{ m c}^4$	$1.14 \pm 0.10 \ (km \ kpc^{-1})^2$		$f_{\infty}^{-4} \frac{R^2}{D^2} \left(1 - \frac{2GM}{Rc^2}\right)^{-1}$
		↓ 逆解き!	
Neutron-star property		Dependence on observable	s Constraint
Μ		$\frac{f_{\infty}^{4}c^{5}}{4G\kappa_{es}} \left(\frac{F_{cool}}{\sigma T_{c}^{4}}\right) \frac{[1-(1+z)^{-2}]^{2}}{(1+z)^{3}} F_{Edc}^{-1}$	$2.10 \pm 0.28 M_{\odot}$
R		$\frac{f_{\infty}^{4}c^{3}}{2\kappa_{\rm es}} \left(\frac{F_{\rm cool}}{\sigma T_{\rm c}^{4}}\right) \frac{1 - (1 + z)^{-2}}{(1 + z)^{3}} F_{\rm Edd}^{-1}$	$13.8\pm1.8\text{km}$
D		$\frac{f_{\infty}^{2}c^{3}}{2\kappa_{\rm es}} \left(\frac{F_{\rm cool}}{\sigma T_{\rm c}^{4}}\right)^{1/2} \frac{1 - (1 + z)^{-2}}{(1 + z)^{3}} F_{\rm Edd}^{-1}$	9.2 ± 1.0 kpc

より慎重に不定性(主に光級面=半径)を考慮した結果の、M-R関係式

Steiner, Lattimer, Brown (2010).

10%程度の違いが生じる。

今後の展望1:ひとみ衛星代替機 (2021-)

従来の測定方法(CCD)に比べて20倍程度のエネルギー分解能

重力赤方偏移効果をより正確に評価出来る。

NICER (Neutron star Interior Composition Explorer)

Gendreau, K. C. et al. 2012, SPIE, 8443, 844313

2017年打ち上げ成功。国際宇宙ステーションに取り付けられ、現在データ取得中。

§ 連星中性子星合体からの重力波

一般相対性理論提唱(1915)重力波の予言(1916)

アルバート・ アインシュタイン (1879-1955)

地球が運動する。その応答が時空場の波(=重力波)として伝わる。

 $_{_{r_{1}}}$ $_{r_{1}}$ $G^{\mu\nu} = 8\pi T^{\mu\nu}$ 時空場 物質場(地球)

重力波が通過すると距離が変わるので干渉縞が変化する! 但し、距離の変化は極めて小さい(ΔL/L~10⁻²¹)。 地球-太陽間(1億5千万km)に対して水素原子一個(10⁻⁸cm)程度。

2015年9月14日、重力波天文学時代の幕開け

2016年2月11日(日本時間12日) 重力波検出を報告するライツィー教授

重力波源はブラックホール連星の合体だった。 太陽質量の36倍と29倍。地球からの距離13億光年。 これまでに少なくとも、4例のブラックホール連星合体 の重力波を検出した。

重力波検出によって、初めてブラック ホールの存在が直接証明された。

コンピュータシミュレーションによるブラックホール 連星合体の例。色は時空のゆがみの程度を表す。

From LIGO HP

重力波波形について、 数値シミュレーション(赤)と 観測データ(グレー)が 極めて高い精度で一致!

時間(秒)

2017年8月17日、 連星中性子星合体からの重力波初検出!

GW170817/GRB170817A/SSS17a Press release was done on 16th Oct. 2017. LIGO Swope +10.9 h 30° LIGO/ Virgo NGC4993 N Fermi/ 30" E∢ GBM 0° 16h 12h 8h DLT40 -20.5 d **IPN Fermi /** INTEGRAL -30° -30°

世界の重力波望遠鏡

LIGO2基+VIRGO1基で到来方向を決めた。

中性子星合体からの重力波

LVT151012

GW170104 AMAAAAA

0

GW170817

i time observable (seconds)

LIGO/University of Oregon/Ben Farr

2

GW170817からの重力波(時間一周波数)

LIGO & Virgo Collaboration PRL (2017)

LIGO & VIRGO Collaboratin: arXiv:1805.11579

Slide from M. Shibata

柔らかい状態方程式がfavored!

What is Tidal Deformability?

e.g. Hinderer (2008), Postnikov, Prakash, Lattimer (2010), Gralla (2018)

Indal Deformability

$$\begin{array}{l}
Q_{ij} = -k_2 \frac{2R^5}{3G} E_{ij} \equiv -\lambda E_{ij}, \\
\uparrow \\
 \mbox{mm} \m$$

重力波では逆に四重極モーメント→重力波となる。その係数をTidal deformabilityが担う。

連星中性子星合体に於ける重力波と Tidal Deformability

e.g. Hinderer (2008), Flanagan & Hinderer (2008), De+(2018)

Leading Orderとしては次の量が重力波にimprintされている。 重力波の位相が(点源と比較して)変化する。

$$\tilde{\Lambda} = \frac{16}{13} \frac{(12q+1)\Lambda_1 + (12+q)q^4\Lambda_2}{(1+q)^5}, \quad q = m_2/m_1 \le 1$$

$$\delta \Psi = -\frac{9}{16} \frac{v^5}{\mu M^4} \left[\left(11 \frac{m_2}{m_1} + \frac{M}{m_1} \right) \lambda_1 + 1 \leftrightarrow 2 \right], \qquad v = (\pi M f)^{1/3},$$

$$\begin{split} \Psi(f) &= 2\pi f t_c - \phi_c - \frac{\pi}{4} + \frac{3M}{128\mu} (\pi M f)^{-5/3} \bigg[1 + \frac{20}{9} \bigg(\frac{743}{336} + \frac{11}{4} \frac{\mu}{M} \bigg) v^2 - 4(4\pi - \beta) v^3 + 10 \bigg(\frac{3058673}{1016064} + \frac{5429}{1008} \frac{\mu}{M} + \frac{617}{144} \frac{\mu^2}{M^2} - \sigma \bigg) v^4 + \bigg(\frac{38645\pi}{252} - \frac{65}{3} \frac{\mu}{M} \bigg) \ln v + \bigg(\frac{11583231236531}{4694215680} - \frac{640\pi^2}{3} - \frac{6848\gamma}{21} \bigg) v^6 \\ &+ \frac{\mu}{M} \bigg(\frac{15335597827}{3048192} + \frac{2255\pi^2}{12} + \frac{47324}{63} - \frac{7948}{9} \bigg) v^6 + \bigg(\frac{76055}{1728} \frac{\mu^2}{M^2} - \frac{127825}{1296} \frac{\mu^3}{M^3} - \frac{6848}{21} \ln(4v) \bigg) v^6 \\ &+ \pi \bigg(\frac{77096675}{254016} + \frac{378515}{1512} \frac{\mu}{M} - \frac{74045}{756} \frac{\mu^2}{M^2} \bigg) v^7 \bigg], \end{split}$$
Flanagan & Hinderer (2008)

2018年、解析方法を改訂。 →上限値のみでなく、下限値も見えて来た。

LIGO & VIRGO Collaboratin: arXiv:1805.11581 See also De, Lattimer, Brown, Berger, Biwer arXiv:1804.08583 (PRL accepted)

LIGO & VIRGO Collaboratin: arXiv:1805.11581

 \sim

 $p(
ho) = K_i
ho^{\Gamma_i}$ 、の形を仮定。

$$\rho_1 = 10^{14.7} \text{ g/cm}^3$$
 $\rho_2 = 10^{15} \text{ g/cm}^3$

$$\vec{E} = \{\log(p_1), \Gamma_1, \Gamma_2, \Gamma_3\}.$$

このFitting Formulaで、ほぼ発表されているEOSの形をカバーできる。

Lackey & Wade (2015)が提案 → LIGO & VIRGO Collaborationもこの形を採用して解析。

中性子星内部の状態方程式に制限がついた!

LIGO & VIRGO Collaboratin: arXiv:1805.11581

二つの中性子星の質量・半径推定値

LIGO & VIRGO Collaboratin: arXiv:1805.11581 arXiv:1805.11579

中性子星の最大 質量>1.97Msolar を前提とした解析。

$$R_1 = 11.9^{+1.4}_{-1.4} \text{ km}$$

 $R_2 = 11.9^{+1.4}_{-1.4} \text{ km}$

Total Mass $2.73^{+0.04}_{-0.01} \,\mathrm{M_{\odot}})$

Mass Range

 $1.16 - 1.60 \ M_{\odot}$

従来の連星系X線バーストによる半径推定値と、 今回の重力波観測の半径推定値が良く一致した!

X線バーストからの推定値 Steiner, Lattimer, Brown (2010).

LIGO & VIRGO Collaboratin: arXiv:1805.11581 arXiv:1805.11579

重力波の観測例は今後劇的に増加する可能性がある!

§ Equation of Sate in Dense Matter

中性子星の歴史

- 中性子の発見 James Chadwick (1932)
- 中性子星の予言 Zwicky & Baade (1934)
- 中性子星の発見
 1965: Antony Hewish and Samuel Okoye がカニ星雲
 からの電波パルス発見(後にカニパルサー起源と分かる)。
 周期33ミリ秒。
- ・ 以降、LMXBなどの検出など。質量・半径等推定され、おおよそ 理論と整合する(太陽質量の1-2倍、半径10km程度)。
- その先の不定性は何に由来するか。その不定性は埋まるのか。

中性子星構造の可能性

何故、おおよそのサイズ(質量・半径)は分かるのか。 しかし何故、これらの可能性を一つに絞れないのか。 From F. Weber 2005

ハイペロン核・メソン凝縮

Muto PTP (1993)

$$\begin{aligned} \mathcal{L} &= \frac{1}{4} f^2 \mathrm{Tr} \,\partial^{\mu} \Sigma^{\dagger} \partial_{\mu} \Sigma + \frac{1}{2} f^2 \Lambda_{\chi SB} (\mathrm{Tr} M(\Sigma - 1) + \mathrm{h.c.}) \\ &+ \mathrm{Tr} \,\overline{\Psi} (i \partial - m_B) \,\Psi + \mathrm{Tr} \,\overline{\Psi} i \gamma^{\mu} [V_{\mu}, \,\Psi] + D \mathrm{Tr} \,\overline{\Psi} \gamma^{\mu} \gamma^5 \{A_{\mu}, \,\Psi\} \\ &+ F \mathrm{Tr} \,\overline{\Psi} \gamma^{\mu} \gamma^5 [A_{\mu}, \,\Psi] + a_1 \mathrm{Tr} \,\overline{\Psi} (\xi M^{\dagger} \xi + \mathrm{h.c.}) \,\Psi \\ &+ a_2 \mathrm{Tr} \,\overline{\Psi} \Psi (\xi M^{\dagger} \xi + \mathrm{h.c.}) + a_3 (\mathrm{Tr} M \Sigma + \mathrm{h.c.}) \mathrm{Tr} \,\overline{\Psi} \Psi , \end{aligned}$$
$$\begin{aligned} \Psi &= \begin{pmatrix} \Sigma^0 / \sqrt{2} + \Lambda / \sqrt{6} & \Sigma^+ & p \\ \Sigma^- & -\Sigma^0 / \sqrt{2} + \Lambda / \sqrt{6} & n \\ \Xi^- & \Xi^0 & -2\Lambda / \sqrt{6} \end{pmatrix}, \end{aligned}$$

 K^- condensation in neutron matter is investigated by taking into account excitation of hyperons on the basis of $SU(3)_L \times SU(3)_R$ chiral symmetry. It is shown that the weak interaction plays an
平衡状態を求め、状態方程式が決まる。

Muto PTP (1993)

バリオン、メソン、ハイペロンが互いに相互作用する中、平衡状態に於けるポテンシャルが 定まり、それぞれの化学ポテンシャルも決定される。 熱力学式 dE = -Pd(1/n) (断熱)より圧力求まる (P(n)が状態方程式)。だが一部未定係数。

Major goals of hypernuclear physics

To understand baryon-baryon interactions

Slide from E.Hiyama

Fundamental and important for the study of nuclear physics

Total number of Nucleon (N) -Nucleon (N) data: 4,000

注:これでも不十分。 特に中性子過剰核側。

 Total number of differential cross section Hyperon (Y) -Nucleon (N) data: 40

NO YY scattering data

YN and YY potential models so far proposed
(ex. Nijmegen, Julich, Kyoto-Niigata)
have large ambiguity.

EOS List (これでも完全ではない) Oertel et al. (2017)

Model	Nuclear interaction	Degrees of freedom	$M_{\rm max},$ (M_{\odot})	$R_{1.4M_{\odot}},$ (km)	Ξ	Publicly available	References
H&W	SKa	$n,p,\alpha,\{(A_i,Z_i)\}$	2.21 ^a	13.9 ^a		No	El Eid and Hillebrandt (1980) and Hillebrandt, Nomoto, and Wolff (1984)
LS180	LS180	$n, p, \alpha, (A, Z)$	1.84	12.2	0.27	Yes	Lattimer and Swesty (1991)
LS220	LS220	$n, p, \alpha, (A, Z)$	2.06	12.7	0.28	Yes	Lattimer and Swesty (1991)
LS375	LS375	$n, p, \alpha, (A, Z)$	2.72	14.5	0.32	Yes	Lattimer and Swesty (1991)
STOS	TM1	$n, p, \alpha, (A, Z)$	2.23	14.5	0.26	Yes	Shen <i>et al.</i> (1998a, 1998b, 2011)
FYSS	TM1	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.22	14.4	0.26	No	Furusawa, Sumiyoshi <i>et al.</i> (2013)
HS(TM1)	TM1*	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.21	14.5	0.26	Yes	Hempel and Schaffner-Bielich (2010) and Hempel <i>et al.</i> (2012)
HS(TMA)	TMA*	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.02	13.9	0.25	Yes	Hempel and Schaffner-Bielich (2010)
HS(FSU)	FSUgold*	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	1.74	12.6	0.23	Yes	Hempel and Schaffner-Bielich (2010) and Hempel <i>et al.</i> (2012)
HS(NL3)	NL3*	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.79	14.8	0.31	Yes	Hempel and Schaffner-Bielich (2010) and Fischer, Hempel <i>et al.</i> (2014)
HS(DD2)	DD2	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.42	13.2	0.30	Yes	Hempel and Schaffner-Bielich (2010) and Fischer, Hempel <i>et al.</i> (2014)
HS(IUFSU)	IUFSU*	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	1.95	12.7	0.25	Yes	Hempel and Schaffner-Bielich (2010) and Fischer, Hempel et al. (2014)
SFHo	SFHo	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.06	11.9	0.30	Yes	Steiner, Hempel, and Fischer (2013)
SFHx	SFHx	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.13	12.0	0.29	Yes	Steiner, Hempel, and Fischer (2013)
SHT(NL3)	NL3	$n,p,\alpha,\{(A_i,Z_i)\}$	2.78	14.9	0.31	Yes	Shen, Horowitz, and Teige (2011)
SHO(FSU)	FSUgold	$n,p,\alpha,\{(A_i,Z_i)\}$	1.75	12.8	0.23	Yes	Shen, Horowitz, and O'Connor (2011)
SHO(FSU2.1)	FSUgold2.1	$n,p,\alpha,\{(A_i,Z_i)\}$	2.12	13.6	0.26	Yes	Shen, Horowitz, and O'Connor (2011)

LS220A	LS220	$n,p,lpha,(A,Z),\Lambda$	1.91	12.4	0.29	Yes	Oertel, Fantina, and Novak (2012) and Gulminelli <i>et al.</i>
LS220 <i>π</i>	LS220	$n,p,\alpha,(A,Z),\pi$	1.95	12.2	0.29	No	(2013) Oertel, Fantina, and Novak (2012) and Peres, Oertel, and Novak (2013)
ВНВΛ	DD2	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}, \Lambda$	1.96	13.2	0.25	Yes	Banik, Hempel, and Bandyonadhyay (2014)
${ m BHB}\Lambda\phi$	DD2	$n,p,d,t,h,\alpha,\{(A_i,Z_i)\},\Lambda$	2.11	13.2	0.27	Yes	Banik, Hempel, and Bandyopadhyay (2014)
δτοςγ	TM1	$n, p, \alpha, (A, Z), \Lambda$	1.90	14.4	0.23	Yes	Shen et al. (2011)
STOSYA30	TM1	$n, p, \alpha, (A, Z), Y$	1.59	14.6	0.17	Yes	Ishizuka et al. (2008)
STOSYA30 π	TM1	$n.p.\alpha.(A.Z).Y.\pi$	1.62	13.7	0.19	Yes	Ishizuka et al. (2008)
STOSY0	TM1	$n, p, \alpha, (A, Z), Y$	1.64	14.6	0.18	Yes	Ishizuka et al. (2008)
$STOSY0\pi$	TM1	$n, p, \alpha, (A, Z), Y, \pi$	1.67	13.7	0.19	Yes	Ishizuka et al. (2008)
STOSY30	TM1	$n, p, \alpha, (A, Z), Y$	1.65	14.6	0.18	Yes	Ishizuka et al. (2008)
STOSY30π	TM1	$n, p, \alpha, (A, Z), Y, \pi$	1.67	13.7	0.19	Yes	Ishizuka et al. (2008)
STOSY90	TM1	$n, p, \alpha, (A, Z), Y$	1.65	14.6	0.18	Yes	Ishizuka et al. (2008)
STOSY90π	TM1	$n, p, \alpha, (A, Z), Y, \pi$	1.67	13.7	0.19	Yes	Ishizuka et al. (2008)
STOSπ	TM1	$n, p, \alpha, (A, Z), \pi$	2.06	13.6	0.26	No	Nakazato, Sumiyoshi, and Yamada (2008)
Model	Nuclear interaction	Degrees of freedom	$M_{\rm max},$ (M_{\odot})	$R_{1.4M_{\odot}},$ (km)	Ξ	Publicly available	References
STOSQ209nπ	TM1	$n, p, \alpha, (A, Z), \pi, q$	1.85	13.6	0.21	No	Nakazato, Sumiyoshi, and Yamada (2008)
STOSQ162n	TM1	$n, p, \alpha, (A, Z), q$	1.54			No	Nakazato, Sumiyoshi, and Yamada (2013)
STOSQ184n	TM1	$n, p, \alpha, (A, Z), q$	1.36	^b		No	Nakazato, Sumiyoshi, and Yamada (2013)
STOSQ209n	TM1	$n, p, \alpha, (A, Z), q$	1.81	14.4	0.20	No	Nakazato, Sumiyoshi, and Yamada (2008, 2013)
STOSQ139s	TM1	$n, p, \alpha, (A, Z), q$	2.08	12.6	0.26	Yes	Sagert <i>et al.</i> (2012) and Fischer, Klähn <i>et al.</i> (2014)
STOSO145s	TM1	$n, p, \alpha, (A, Z), a$	2.01	13.0	0.25	Yes	Sagert <i>et al.</i> (2012)
STOSO1558	TM1	$n, p, \alpha, (A, Z), a$	1.70	9.93	0.25	Yes	Fischer et al. (2011)
STOSQ162s	TM1	$n, p, \alpha, (A, Z), q$	1.57	8.94	0.26	Yes	Sagert et al. (2009)
STOSQ165s	TM1	$n, p, \alpha, (A, Z), q$	1.51	8.86	0.25	Yes	Sagert et al. (2009)

Nuclear Force and dense EOS (nucleons only)

APR

Slide from T.Hatsuda

Mass-Radius relation of N_{agg} (nucleons only)

Hyperon Crisis (Takatsuka et al., 2002)

Hyperon Crisis

Slide from T.Hatsuda

Masuda, Hatsuda & Takatsuka, Astrophysical Journal Letters 764 (2013) 12

§ 高密度状態方程式:今後の展望

Extension to Hyperon Matter +3体力

YN and YY interactions : constricted so as to reproduce the light Λ hypernuclei Slide from H. Togashi *with the Gaussian expansion method*

(E. Hiyama et al., PRC 66 (2002) 024007, PRC 74 (2006) 054312)

We need to consider an effective potential based on Three-Baryon Force (TBF) for ΛNN , $\Lambda\Lambda N$, $\Lambda\Lambda\Lambda$ systems.

(Y. Yamamoto et al., PRC 90 (2014) 04580, HT et al., PRC 93 (2016) 035808)

クォーク相入りEOSでもM-R関係を満たせる可能性

Masuda, Hatsuda, Takatsuka (2013a,b), (2016a,b)

もう一度言おう、 上限値のみでなく、下限値も見えて来たと。

LIGO & VIRGO Collaboratin: arXiv:1805.11581 See also De, Lattimer, Brown, Berger, Biwer arXiv:1804.08583 (PRL accepted)

中性子星内部の状態方程式に制限がついた!

LIGO & VIRGO Collaboratin: arXiv:1805.11581

二つの中性子星の質量・半径推定値

LIGO & VIRGO Collaboratin: arXiv:1805.11581 arXiv:1805.11579

中性子星の最大 質量>1.97Msolar を前提とした解析。

$$R_1 = 11.9^{+1.4}_{-1.4} \text{ km}$$

 $R_2 = 11.9^{+1.4}_{-1.4} \text{ km}$

Total Mass 2.73^{+0.04}_{-0.01} M_☉]

Mass Range

 $1.16 - 1.60 \ \mathrm{M}_{\odot}$

Hypernuclear γ-ray data since 1998 (slide from H.Tamura)

 $V_{\Lambda N} = V_0 + \boldsymbol{\sigma}_{\Lambda} \cdot \boldsymbol{\sigma}_N V_{\sigma \cdot \sigma} + \mathbf{L} \cdot (\mathbf{s}_{\Lambda} + \mathbf{s}_N) V_{\text{SLS}} + \mathbf{L} \cdot (\mathbf{s}_{\Lambda} - \mathbf{s}_N) V_{\text{ALS}} + S_{12} V_{\text{tensor}} + \cdots$

Millener (p-shell model),

Hiyama (few-body)

Slide from E.Hiyama

Spectroscopy of **AA**-hypernuclei

E. Hiyama, M. Kamimura, T. Motoba, T. Yamada and Y. Yamamoto Phys. Rev. 66 (2002), 024007

I have been looking forward to having new data in this mass-number region.

Lattice QCD

Slide from T.Hatsuda

$$Z = \int [dU] [dqd\bar{q}] \exp\left[-\int d\tau d^3 x \mathcal{L}_{\rm E}\right]$$

10⁷ -10⁹ dimensional integral → Monte Carlo integration

Slide from T.Hatsuda

<u>Qualitative</u> studies (2010-2014) LQCD simulations of BB force with 3 degenerate flavors (m_u=m_d=m_s)

Slide from T.Hatsuda

HAL QCD Coll., Phys. Rev. Lett. 106(2011) 162002 Nucl. Phys. A881 (2012) 28

Nuclear EOS from Lattice NN force + BHF calculation

(NN force: ¹S₀, ³S₁, ³D₁ channels only)

HAL QCD Coll., Phys. Rev. Lett. 111 (2013) 112503 Slide from T.Hatsuda

Nuclear Matter

Neutron Matter

<u>Quantitative</u> studies (2015-) LQCD simulations of BB force at physical point $(m_u=m_d \neq m_s)$

Slide from T.Hatsuda

§ Future Prospects of Gravitational Wave Astronomy

Gravitational waveform from NS-NS: (1.35-1.35 solar mass)

Hotokezaka et al. 2016 (Bernuzzi et al., Kiuchi et al. 2017,...)

Slide from M. Shibata

合体後の高周波重力波のEOS依存性

Hotokezaka, Kyutoku, Sekiguchi, Shibata PRD (2016).

重力波のハイペロンあり/なしに対する依存性

Y. Sekiguchi et al., PRL 107 (2011) 211101

S: Original Shen EOS (ハイペロンなし) H: ハハイペロン入り Shen EOS

kHz以上の高周波で顕著な違いが期待される。

GW170817では高周波重力波見つかっていない

LIGO & Virgo Collaboration PRL (2017)

LIGO & Virgo Collaboration arXiv:1805.11579

"This result is consistent with both prompt collapse to a BH and With a post-merger signal which is too weak to be measurable with our current sensitivity"

Planning for a bright tomorrow

From HP of LIGO Scientific Collaboration https://www.ligo.org/science/Publication-ObservingScenario/index.php

Advanced LIGO

Time-Line of LIGO-VIRGO

From LIGO HP

O3 will start early in 2019.

KAGRA may join O3 from late in 2019 (private communication).

次世代重力波望遠鏡:Einstein Telescope (ET) (計画中)

http://www.et-gw.eu/index.php

第9回ET国際会議(2018)

連星中性子星合体シミュレーション

高見健太郎氏 (神戸高専/理研数理 創造プログラム)

Luca Baiotti (大阪大学)

Takami, Rezzolla, Baiotti PRD (2015)が LIGOの連星中性子合体重力波論文で テンプレートとして採用されている (arXiv:1805.11579)。

衝突後のピーク周波数のM,R依存性

Takami, Rezzolla, Baiotti PRL (2014)

$$\bar{M} \equiv (M_1 + M_2)/2$$
$$\bar{R} \equiv (R_1 + R_2)/2,$$

Takami, Rezzolla, Baiotti PRL (2014, 2015), Rezzolla & Takami (2016).

f1,f2が観測から求まる→(各EOS毎に)M,Rが求まる→クロスチェックとして別の重力波解析 から求まる(M,R)と比較し、EOSを決定する。→更に別のクロスチェックとして、各EOS毎に 中性子星の構造を解き(TOV方程式)、求まったM,Rとの比較をする。

連星中性子星合体シミュレーション

New movements in basic science. 基礎科学の新たな胎動。 Program Director . Testo Hatuda 現在初田氏(iTHEMS)等が開発した 中性子星物質を表すクォーク・原子核 理論計算を用いて重力波形を計算する! 観測と整合するか?

高見健太郎氏 (神戸高専/理研数理 創造プログラム)

Luca Baiotti (大阪大学)

Takami, Rezzolla, Baiotti PRD (2015)が LIGOの連星中性子合体重力波論文で テンプレートとして採用されている (arXiv:1805.11579)。

Yongjia Huang氏 (紫金山天文台 中国)が今秋、 iTHEMSに合流!

S.N. (ABBL/iTHEMS, RIKEN)

連星中性子星合体でガンマ線バーストが 発生した可能性が極めて高い。

連星中性子星合体からの ガンマ線バースト想像図

中性子星が合体した1.7秒後にガンマ線バーストが検出された!

ショートガンマ線バーストの形成理論

オリバー・ユスト研究員 (長瀧研)

伊藤裕貴 研究員 (長瀧研)

連星中性子星合体で(少なくとも)ランタノイド が生成された可能性が高い。。

Tanaka+17、他。

連星中性子星合体に於ける R-Process元素合成の理論的研究

Simulations of NSM by A.Bauswein (2015).

cm

Oliver Just (長瀧研)

Just et al. (2015).

Gold Proton #=79, Atomic #=197

Uran Proton#=92, Atomic#=238

理研原子核グループと共に元素の起源を解明する!

新元素:陽子数=113、陽子+中性子数=278が理研和光で発見された!

謝辞

- 世話人のみなさま、いい機会をありがとう
 ございました。
- ・この一週間(土日含め)家族の協力に感謝。

2018年7月 つくば山

まとめ

- 重力波によって質量、半径のみならず(半径は従来の X線バーストの解析と良く整合することが確認された!)、
 中性子星内部の状態方程式にも情報が得られてきた。
- LIGO/VIRGOの再観測は2019年初めから。
- ・再観測では高周波側の感度が上がっている可能性がある。
 更に状態方程式に制限がつく可能性。
- 上記中性子星内部解を満たす状態方程式にも縮退はある だろう(e.g. APRはハイペロンなし、クォークなし)。
- ハイペロン研究の進展(YN, YY相互作用の理解。三体力も)が必須。J-PARC, 少数多体計算。
- LQCDが進展すればYN, YY相互作用も第一原理計算出来る
 時代が来るだろう。
- ハドロン相ークォーク相への転移の理解が必要。

少なくとも今後10年は中性子星を中心とした原子核宇宙の研究が大きく進むだろう。