Determination of axion abundance using lattice QCD

Norikazu Yamada (KEK Theory Center/SOKENDAI)

基研研究会「熱場の量子論とその応用2017」@京大基研 2017/08/30

Collaboration with Julien Frison, Ryuichiro Kitano, Hideo Matsufuru, Shingo Mori

Goal QCD θ-vacuum(spontaneous CPV), role of instantons [poster by Mori],

Strong CP problem

Symmetries of the SM do allow the θ term,

$$\mathcal{L}_{\theta} = \frac{i\theta}{32\pi^2} \epsilon^{\mu\nu\sigma\rho} \operatorname{Tr}(G_{\mu\nu}G_{\sigma\rho}) = \frac{i\theta}{32\pi^2} G\tilde{G}$$
$$G_{\mu\nu} : \text{gluon field strength}$$

 $\theta = \theta_{QCD} + \theta_{Yukawa}$ $NEDM \exp \rightarrow \theta \leq 10^{-10} !$ $\Rightarrow Why is \theta \text{ so small}?$

Two possible solutions

$$\checkmark m_{\rm u} = 0$$

 θ -term \Rightarrow unphysical

✓Peccei-Quinn mechanism

 θ -term dynamically vanishes

$m_{\rm u} = 0?$

In 1992, "quark masses" appears for the first time.

 $I(J^{P}) = \frac{1}{2}(\frac{1}{2}^{+})$

Mass m = 5 to 15 MeV $m_d/m_s = 0.04$ to 0.06 Charge $= -\frac{1}{3} e \qquad I_Z = -\frac{1}{2}$

The *d*-, *u*-, and *s*-quark masses are estimates of so-called "currentquark masses," with ratios m_u/m_d and m_d/m_s extracted from pion and kaon masses using chiral symmetry. The estimates of *d* and *u* masses are not without controversy and remain under active investigation. Within the literature there are even suggestions that the *u* quark could be essentially massless. The *s*-quark mass is estimated from SU(3) splitting in hadron masses.

U

$$I(J^{P}) = \frac{1}{2}(\frac{1}{2}^{+})$$

Mass m = 2 to 8 MeV $m_u/m_d = 0.25$ to 0.70

Charge
$$= \frac{2}{3} e$$
 $I_z = +\frac{1}{2}$

See the comment for the *d* quark above.

Latest PDG (2016)

 $m_{\rm u} = 0?$

Light Quarks (*u*, *d*, *s*)

OMITTED FROM SUMMARY TABLE

u-QUARK MASS

The *u*-, *d*-, and *s*-quark masses are estimates of so-called "current-quark masses," in a mass- independent subtraction scheme such as $\overline{\text{MS}}$. The ratios m_u/m_d and m_s/m_d are extracted from pion and kaon masses using chiral symmetry. The estimates of *d* and *u* masses are not without controversy and remain under active investigation. Within the literature there are even suggestions that the *u* quark could be essentially massless. The *s*-quark mass is estimated from SU(3) splittings in hadron masses.

We have normalized the $\overline{\text{MS}}$ masses at a renormalization scale of $\mu = 2$ GeV. Results quoted in the literature at $\mu = 1$ GeV have been rescaled by dividing by 1.35. The values of "Our Evaluation" were determined in part via Figures 1 and 2.

MS MASS (MeV)	DOCUMENT ID		TECN
2.2 $\substack{+0.6\\-0.4}$ OUR EVALUATION	See the ideogram below.		
$2.27\!\pm\!0.06\!\pm\!0.06$	¹ FODOR	16	LATT
2.36 ± 0.24	² CARRASCO	14	LATT
$2.57\!\pm\!0.26\!\pm\!0.07$	³ AOKI	12	LATT
$2.15\!\pm\!0.03\!\pm\!0.10$	⁴ DURR	11	LATT
1.9 ± 0.2	⁵ BAZAVOV	10	LATT
$2.24\!\pm\!0.10\!\pm\!0.34$	⁶ BLUM	10	LATT

 $N_{f} = 1 + 2$

 $\chi_{\rm t} \propto m_1$

 $m_1 \ll m_2 = m_3$

Topological susceptibility in $N_f=1+2$

0.003 0.0025 \bigcirc β =3.31, Wilson flow 0.002 $\Delta \beta = 3.31$, Symanzik flow \square β =3.31, Iwasaki flow ^{*} 0.0015 × $\Diamond \circ \Diamond \beta = 3.31$, DBW2 flow χ_{t} : topological $\bigcirc \cdots \bigcirc \beta = 3.5$, Wilson flow $\square \square \square \beta = 3.5$, Iwasaki flow susceptibility $\bigcirc \beta = 3.61$, Wilson flow 0.001 Δ β=3.61, Symanzik flow $\bigcirc \beta$ =3.7, Wilson flow $\Delta \beta$ =3.7, Symanzik flow 0.0005 β =3.7, Iwasaki flow ---- $\Delta \beta = 3.8$, Symanzik flow 0 -0.2 0.2 0.6 0.8 0 0.4 m_u^{PCAC}/m_s^{PCAC}

J. Frison, et al., in preparation

PQ mechanism [Peccei and Quinn (77)]

Introduce a complex scalar field $\varphi(x) = |\varphi(x)| e^{ia(x)/f_a}$

$$V(\varphi) = \lambda \left(|\varphi|^2 - \frac{f_a^2}{2} \right)^2 \xrightarrow{\text{SSB}} \langle \varphi \rangle e^{ia/f_a}$$

Through the coupling to quarks

Axion mass

Axion mass: $m_a^2(T) = \chi_t(T) / 2 f_a^2$

 χ_t : topological susceptibility

$$\chi_t = -\frac{1}{V} \frac{1}{Z} \frac{d^2 Z}{d\theta^2} \bigg|_{\theta=0} = \frac{\langle Q^2 \rangle}{V}$$

Q: topological charge
$$Q = \frac{1}{32\pi^2} \int d^4x \, G\tilde{G}$$

At $T=0, \chi_t \approx [80 \text{ MeV}]^4$ $\Rightarrow m_a \approx 6 \times 10^{-6} \text{eV} \left(\frac{10^{12} \text{GeV}}{f_a}\right)$

V(a)axion abundance T≫T* Evolution of coherent component: $m_a \sim 0 \ll 3H$ $\ddot{a} + 3H(T)\dot{a} + m_a(T)^2 a = 0$ $3H(T)^2 M_{\rm pl}^2 \propto T^4$ $m_a^2(T) = \chi_t(T) / 2 f_a^2$ $T>T^*$ $m_a \neq 0 \leq 3H$ Initially, $3H(T) \gg m_a(T) \Rightarrow \dot{a} = 0$ When $3H(T^*) \sim m_a(T^*) \Rightarrow a$ starts to oscillate. $T \approx T^*$ $n_a(T_0) \approx n_a(T^*)(T_0/T^*)^3$ $m_a^* \approx 3H$ $\sim m_a(T^*) f_a^2 \theta_{a,i}^2 (T_0/T^*)^3$ $(\theta_{a,i} = \theta + a_{ini}/f_a)$ $T=T_0$ Need to know T dependence of $\chi_t(T)$ $m_{a0} > 3H_0$

Constraints on axion mass

 $k_{\rm model}/f_a$

 $\chi_t(T)$ from Instanton calculus [Gross, Pisarski, Yaffe (1981)] Estimate of axion abundance requires $\chi_t(T)$ in $T_c < T < 10 T_c$. Dilute Instanton Gas Approximation (DIGA) is often used.

$$\chi_t(T) = m_a^2(T) f_a^2 \propto m_u m_d m_s \Lambda_{\text{QCD}}^b T^{-8}$$

$$\chi_t$$
Instanton action = $e^{-8\pi^2/g^2}$
b: beta function
$$\Omega_a \simeq 0.2 \cdot \theta_{\text{ini}}^2 \left(\frac{m_a}{10^{-5} \text{ eV}}\right)^{-7/6}$$
T

Over-closure bound

Over-closure bound

Is DIGA reliable?

At low $T (\sim \Lambda_{QCD})$, validity is questionable. The following extreme behaviors are suggested or yet-allowed.

✓ Step function-like behavior $\chi_t(T) \sim \chi_t(T=0) \ \theta(T_c-T)$ if $m_{u,d} < m_q^{crit}$

✓ A bit milder case $\chi_t(T) \sim \chi_t(T=0)$ for $T \leq T_c$ $\sim \chi_t(T=0) \exp[-2c(m_q) T^2/T_c^2]$ for $T > T_c$

In extreme cases

[Kitano, Yamada (2015)]

$\chi_t(T) = \langle Q^2 \rangle / V_4$

in $T_{\rm c} < T < O(10 \times T_{\rm c})$

Lattice calculations of $\chi_t(T)$

- Generate configurations 1
 - Measure Q at each configuration

$$egin{aligned} Q &= \int d^4x rac{1}{32\pi^2} F ilde F \ &= \int d^4x \; {
m tr} \gamma_5 \end{aligned}$$

Lattice calculations of $\chi_t(T)$

 $\chi_t =$

χt in pure Yang-Milles

in 2015, three independent calculations appeared. (in the SU(3) Yang-Milles theory, **no quarks yet**)

 E. Berkowiz, M. Buchoff, E. Rinaldi (LLNL) Bosonic (cooling)

- R. Kitano and NY (KEK) Index theorem
- S. Mages et al (BMW) Bosonic (Wilson Flow)

Quenched approximation (no dynamical quark)

We see a clear power law even at a very low temperature.

Standard method fails at $T > 4 T_c$.

Problem in the standard method at high T

 $\langle Q^2 \rangle$: width of Q-distribution

Above a certain high T, distribution $\Rightarrow \delta(Q)$

Fail to estimate χ_t (= $\langle Q^2 \rangle / V_4$) when $\langle Q^2 \rangle \ll 1$

✓ New Method

J. Frison, R. Kitano, H. Matsufuru, S. Mori, NY, JHEP 1609 (2016) 021 [arXiv:1606.07175 [hep-lat]]

New Method

J. Frison, R. Kitano, H. Matsufuru, S. Mori, NY, JHEP 1609 (2016) 021 [arXiv:1606.07175 [hep-lat]]

 $\langle Q^2 \rangle = \chi_t V$

Give up $\chi_t(T)$ Focus on $d \ln \chi_t(T) / d \ln T$

New Method

J. Frison, R. Kitano, H. Matsufuru, S. Mori, NY, JHEP 1609 (2016) 021 [arXiv:1606.07175 [hep-lat]]

$$\left. \frac{d\ln \frac{Z_{Q_2}(T)}{Z_{Q_1}(T)}}{d\ln T} \right|_{N_{
m site}} = \left. \frac{d\ln w(T)}{d\ln T} \right|_{N_{
m site}} \left. \frac{d\ln \frac{Z_{Q_2}(w)}{Z_{Q_1}(w)}}{d\ln w} \right|_{N_{
m site}}$$

$$\omega(T) = \chi_t(T) V_4 \quad (m_\pi \text{ and } N_{\text{site}} \text{ are fixed})$$
$$Z(\theta) = \sum_{Q=-\infty}^{\infty} Z_Q e^{i\theta Q}$$

To experts

 $\omega(T) = \chi_t(T) V_4$ (m_q and N_{site} are fixed)

$$\begin{aligned} \frac{d\ln\frac{Z_{Q_2}}{Z_{Q_1}}}{d\ln T} &= \frac{\beta^2 \beta_g}{6} \Delta S_g^{(Q_2,Q_1)}(\beta,\bar{m}_q) + N_f \left(1 + \frac{d\ln m_q}{d\ln a}\right) \bar{m}_q \left(\langle s_{\bar{q}q} \rangle_{\beta,\bar{m}_q}^{(Q_2)} - \langle s_{\bar{q}q} \rangle_{\beta,\bar{m}_q}^{(Q_1)}\right) \\ \text{where} \quad \Delta S_g^{(Q_2,Q_1)}(\beta,\bar{m}_q) &= -\frac{1}{\beta} \left(\langle S_g \rangle_{\beta,\bar{m}_q}^{(Q_2)} - \langle S_g \rangle_{\beta,\bar{m}_q}^{(Q_1)}\right) \end{aligned}$$

$$\hat{s}_{ar{q}q} \;\; = \;\; \sum_x ar{q}_x \, q_x$$

To experts

 $\omega(T) = \chi_t(T) V_4 \quad (m_q \text{ and } N_{\text{site}} \text{ are fixed})$

When
$$\omega \gg 1$$
, $\frac{d \ln \frac{Z_{Q_2}}{Z_{Q_1}}}{d \ln w} = \frac{Q_2^2 - Q_1^2}{2w} (1 + \cdots)$

When
$$\omega \ll 1$$
, $\frac{d \ln \frac{Z_{Q_2}}{Z_{Q_1}}}{d \ln w} = n_{Q_2} - n_{Q_1} + O(w)$

New Method

J. Frison, R. Kitano, H. Matsufuru, S. Mori, NY, JHEP 1609 (2016) 021 [arXiv:1606.07175 [hep-lat]]

$$\begin{split} \frac{d\ln\chi_t(T)}{d\ln T} &= \left[\frac{\beta^2 \beta_g}{6} \Delta S_g^{(Q_2,Q_1)}(\beta,\bar{m}_q) + N_f \left(1 + \frac{d\ln m_q}{d\ln a} \right) \bar{m}_q \left(\langle s_{\bar{q}q} \rangle_{\beta,\bar{m}_q}^{(Q_2)} - \langle s_{\bar{q}q} \rangle_{\beta,\bar{m}_q}^{(Q_1)} \right) \right] \\ &\times \frac{1}{n_{Q_2} - n_{Q_1}} + 4 + O(w) \,. \end{split}$$
$$\Delta S_g^{(Q_2,Q_1)}(\beta,\bar{m}_q) = -\frac{1}{\beta} \left(\langle S_g \rangle_{\beta,\bar{m}_q}^{(Q_2)} - \langle S_g \rangle_{\beta,\bar{m}_q}^{(Q_1)} \right) \end{split}$$

Looks complicated, but calculable!

High T Limit ($g^2 \rightarrow 0$ limit)

Hight *T* Limit
$$\Rightarrow S_g^{(Q)}|_{\text{BPST}} = \frac{8\pi^2}{g^2}|Q|$$

cf. $S_g = \int d^4x \frac{1}{2} \text{Tr} [G_{\mu\nu}G_{\mu\nu}] \ge \int d^4x \frac{1}{2} |\text{Tr} G_{\mu\nu}\tilde{G}_{\mu\nu}|$

$$\frac{d}{d\ln T} \left(\ln \frac{\chi_t(\beta)}{\chi_t(\beta_{\text{ref}})} \right) \Big|_{\text{BPST}} \approx -16\pi^2 \left(b_0 + b_1 g^2 \right) + 4 \approx -11 + 4$$

With |Q|=1, DIGA results $\chi_t(T) \sim T^{-7}$ is reproduced.

The above is the quenched case. Similar argument in dynamical case.

✓ Test in quench

J. Frison, R. Kitano, H. Matsufuru, S. Mori, NY, JHEP 1609 (2016) 021 [arXiv:1606.07175 [hep-lat]]

- V=16³×4 (and 24³×4)
- Iwasaki gauge action w/ Q=0, 1, 2
- $T_{\rm c} < T < 10^4 T_{\rm c}$

Test in the quenched approximation

[Kitano, Frison, Matsufuru, Mori, NY (2016)]

✓ Improved calculation J. Frison, R. Kitano, H. Matsufuru, S. Mori, NY, in preparation

- V= $24^3 \times 6$
- Iwasaki gauge action w/ Q=0, 5, 19, 36, 45
- $T_{\rm c} < T < 6 T_{\rm c}$

Test in the quenched approximation

[Kitano, Frison, Matsufuru, Mori, NY, in preparation]

Summary

- ✓ Lattice QCD can explore axion physics!
- ✓ New method allows us to calculate $\chi_t(T)$ at very high *T*.
- ✓ The instanton calculus will be replaced by lattice determination of $\chi_t(T)$ in the estimate of the axion abundance.