gradient flowで探る 格子QCDの エネルギー運動量テンソル

Yusuke Taniguchi for WHOT QCD collaboration

S.Ejiri, R.Iwami, K.Kanaya, M.Kitazawa, M.Shirogane, A.Suzuki, H.Suzuki, Y.T, T.Umeda, N.Wakabayashi

PRD 95, 054502 (2017), PRD 96, 014509 (2017)

Our motivation

Our motivation

specific near, viscosity, "

Today's 2nd topic

Measure operators on lattice

terms in QCD Lagrangian

 $\delta_{\mu\nu}F^{a}_{\rho\sigma}(x)F^{a}_{\rho\sigma}(x) \qquad \delta_{\mu\nu}\bar{\psi}(x)\overleftrightarrow{D}\psi(x) \qquad \delta_{\mu\nu}\bar{\psi}(x)\psi(x)$

terms in QCD Lagrangian when trace is taken $F^{a}_{\mu\rho}(x)F^{a}_{\nu\rho}(x) \quad \bar{\psi}(x)\left(\gamma_{\mu}\overleftrightarrow{D}_{\nu}+\gamma_{\nu}\overleftrightarrow{D}_{\mu}\right)\psi(x)$

Renormalization

Well established for E and P

Karsch coefficients

problems

non universal (No Poincare symmetry)

• depends on: lattice action, operator additive correction for $\delta_{\mu\nu} \overline{\psi}(x) \psi(x)$

Easier method for renormalization?

Gradient Flow as a renormalization scheme

Narayanan-Neuberger(2006), Lüscher(2010), Lüscher-Weisz(2011)

Gauge operators with flowed field $A_{\mu}(t,x)$

Goes not have UV divergence

operators are renormalized

gauge flow

$$\partial_t B_{\mu}(t,x) = D_{\nu}G_{\nu\mu}(t,x) \qquad B_{\mu}(t=0,x) = A_{\mu}(x)$$
Formal solution

$$B_{\mu}(t,x) = \int d^4y \left(K_t(x,y)A_{\mu}(y) + \int_0^t ds K_{t-s}(x,y)R_{\mu}(s,y) \right)$$

$$K_t(x,y) = \int_p e^{ip(x-y)}e^{-tp^2} = \frac{e^{-\frac{(x-y)^2}{4t}}}{(4\pi t)^2}$$

$$R_{\mu}(s,y) = bB^2(s,y) + cB^3(s,y)$$
fermion flow

$$\partial_t \chi(t,x) = D_{\mu}D_{\mu}\chi(t,x) \qquad \chi(t=0,x) = \psi(x)$$

 $\chi(t,x) = \int_{\mathcal{Y}} \left(K_t(x,y)\psi(y) + \int_0^t ds K_{t-s}(x,y) \left(2B_\mu(s,y)\partial_\mu + B_\mu^2(s,y) \right) \left(\int_z K_s(y,z)\psi(z) + \chi(s,y) \right) \right)$

We need to renormalize

- gauge coupling
- quark mass

quark wave function

gauge wave function

equivalent to gauge coupling renormalization for gauge invariant operator like $G^a_{\mu\nu}G^a_{\mu\nu}$

No UV divergence if we adopt $\mathcal{L} = \frac{1}{4a_0^2} F^a_{\mu\nu} F^a_{\mu\nu}$

Five steps to calculate $T_{\mu\nu}$

1. Flow the gauge link and quark fields

2. Calculate expectation value of flowed operators

3. Multiply the matching coefficients

H.Suzuki, PTEP 2013, 083B03 (2013)

Makino-Suzuki, PTEP 2014, 063B02 (2014)

5. Take t→0 limit

4. Take $a \rightarrow 0$ limit

two reasons

Solve an operator mixing

 $\{T_{\mu\nu}\}(x,t,a) = \{T_{\mu\nu}\}_{WT}(x) + t(dim6 operator)$

Use of perturbative matching coefficients

Can we extract physics before $a \rightarrow 0$?

First topic

1 point function of energy-momentum tensor

Highlights?

Thermodynamical quantity: energy, pressure

energy $\begin{pmatrix} T_{00} & T_{01} & T_{02} & T_{03} \\ T_{10} & T_{11} & T_{12} & T_{13} \\ T_{20} & T_{21} & T_{22} & T_{23} \\ T_{30} & T_{31} & T_{32} & T_{33} \end{pmatrix}$ pressure Entropy density $s = \begin{pmatrix} \frac{\partial S}{\partial V} \\ \frac{\partial V}{\partial T} \end{pmatrix}_{V} = \begin{pmatrix} \frac{\partial p}{\partial T} \\ T \end{pmatrix}_{V} = \frac{\epsilon + p}{T} = \frac{\langle T_{00} + T_{ii} \rangle}{T}$ Maxwell's relation integrable condition of entropy

Comparison with established method

 $(e+p)/T^4$

 $t \rightarrow 0$ limit by linear extrapolation

SU(3) Yang-Mills (Quench)

FlowQCD: Kitazawa, Iritani, Asakawa, Hatsuda, Suzuki

Second topic

2 point correlation function of fluctuation

$$C_{\mu\nu;\rho\sigma}(t;x_0) = \frac{1}{T^5} \int_{V_3} d^3x \left(\langle \delta T_{\mu\nu}(t;x_0,\vec{x}) \delta T_{\rho\sigma}(t;0) \rangle \right)$$

fluctuation: $\delta T_{\mu\nu}(t;x) = T_{\mu\nu}(t;x) - \langle T_{\mu\nu}(t;x) \rangle$

Highlights?

Conservation law

$$\frac{d}{dx_0}C_{0\nu;\rho\sigma}(x_0) = 0$$

Linear response relations $C_{0i;0i} = C_{00;ii} = -\frac{\epsilon + p}{T^4} \qquad C_{00;00} = \frac{c_V}{T^3}$

Conservation law

$$\frac{d}{dx_0} \int_{V_3} d^3 x \left(\langle \delta T_{0\nu}(t; x_0, \vec{x}) \delta T_{\rho\sigma}(t; 0) \rangle \right) = 0$$

$$P_{\mu}$$

SU(3) Yang-Mills (Quench)

FlowQCD: Kitazawa, Iritani, Asakawa, Hatsuda

Nf=2+1 QCD

a~0.07 [fm], heavy ud quark WHOT QCD collaboration

Entropy density

Nf=2+1 QCD

SU(3) Yang-Mills (Quench)

FlowQCD: Kitazawa, Iritani, Asakawa, Hatsuda

a→0 limit done!

$T/T_{ m c}=1.68$						
N_s	$N_{ au}$	β	$N_{ m conf}$			
96	24	7.265	200,000			
64	16	6.941	180,000			
48	12	6.719	180,000			

$T/T_{ m c}=2.24$						
N_s	$N_{ au}$	β	$N_{ m conf}$			
96	24	7.500	200,000			
64	16	7.170	180,000			
48	12	6.943	180,000			

Specific heat

Linear response relation

SU(3) Yang-Mills (Quench)

$a \rightarrow 0$ limit done!

Ref[28]: Gavai et al, Phys. Rev.D71(2005) 074013
Ref[16]: Borsanyi et. al., JHEP 1207, 056 (2012)

 $T/T_{\rm c} = 1.68$

N_s	$N_{ au}$	β	$N_{ m conf}$
96	24	7.265	200,000
64	16	6.941	180,000
48	12	6.719	180,000

$$T/T_{\rm c} = 2.24$$

N_s	$N_{ au}$	β	$N_{ m conf}$
96	24	7.500	200,000
64	16	7.170	180,000
48	12	6.943	180.000

Summary

Flow method works well for EM tensor!

- as powerful as the derivative method.
- More suitable for Wilson fermion.
- Good agreement with T integration method

Lattice artifact is severe for Nt=4, 6, 8

Summary

Gradient flow works well for EMT correlation function
We have good results:

- Conservation law
- ▶Linear response relation

Future plan

We want to work for viscosity in future.

Topics dropped from this talk

Topics dropped from this talk

