ブラックホール地平面における 粒子と弦の運動のカオス

棚橋典大 [阪大理]

based on

Universality in Chaos of Particle Motion near Black Hole Horizon 橋本幸士、棚橋典大 [arXiv:1610.06070]

Work in progress (橋本幸士、村田佳樹、棚橋典大)

Classical particle moving near black hole (BH) horizon

String moving near BH horizon in AdS spacetime

✓ Particle & string motion become chaotic due to BH gravity
 ✓ Lyapunov exponent λ of the chaos is bounded by surface gravity κ

 $\lambda \leq \kappa = 2\pi T/\hbar$

A bound on chaos in QFT at temperature *T* :

 $\lambda \leq 2\pi T/\hbar$

[Maldacena-Shenker-Stanford '15]

Probing the effect of temperature T to chaos in QFT.

We study effect of temperature to chaos in classical gravity.
t
Use BH surface gravity $\kappa = 2\pi T/\hbar$ instead.

To probe effect of κ , we look at trajectories very close to BH.

CONTENTS

1. Chaos bound for particle near BH

2. Chaos bound for AdS string

3. Summary

Classical Chaos

Classic chaos in deterministic dynamical systems

= Non-periodic bounded orbits sensitive to initial conditions

Diagnostics of chaos

Poincaré plot = Section of orbits in phase space

Lyapunov exponent λ = Separation growth rate of nearby orbits

To realize a particle moving very close to BH horizon,
 1. put a particle in a trapping harmonic potential

 $(\leftarrow$ no chaos)

2. take it close to a BH horizon

7

2. take it close to a BH horizon & look at the separatrix

• Near-horizon limit $r_0 \rightarrow r_{\text{horizon}}$

 $\mathcal{L} \simeq C(m,\kappa,\mathrm{slope of }V) imes \left[\dot{r}^2 + \kappa^2 (r-r_0)^2\right]$

Examples

Charged particle near charged black hole: $\mathcal{L} = -m\sqrt{-g_{\mu\nu}(X)\dot{X}^{\mu}\dot{X}^{\nu}} - V(X) \quad \text{with} \quad V(X) = e\frac{dX^{0}}{dt}A_{0}(X)$ $\partial_{r}\left(\sqrt{-\det g}\,g^{rr}g^{00}\partial_{r}A_{0}\right) = 0 \quad \Rightarrow \quad V \sim c \times r$

Particle with scalar force:

$$\mathcal{L} = -\sqrt{-g_{\mu\nu}(X)} \dot{X}^{\mu} \dot{X}^{\nu} (m + \phi(X))$$
$$\partial_r \left(\sqrt{-\det g} g^{rr} \partial_r \phi\right) = 0 \qquad \Rightarrow \qquad V \sim c \quad \times \log r$$

These two examples give $\lambda = \kappa$ for any *m* and *c*.

Numerical check

$$\mathcal{L}=-\sqrt{f(x)-rac{\dot{x}^2}{f(x)}-\dot{y}^2-rac{\omega^2}{2}\left[\left(x-x_c
ight)^2+y^2
ight]}\quad \left[f(x)\equiv 2\kappa x
ight]$$

Particle near Potential Minimum

Particle near BH Horizon

Numerical check

$$\mathcal{L} = -\sqrt{f(x) - rac{\dot{x}^2}{f(x)} - \dot{y}^2 - rac{\omega^2}{2}\left[\left(x - x_c
ight)^2 + y^2
ight]} \quad \left[f(x) \equiv 2\kappa x
ight]$$

Particle near Potential Minimum

Particle near BH Horizon

Periodic motion, no chaos

Chaotic motion

$$\begin{array}{l} \text{Poincaré plot at } y = 0 \\ z = -\sqrt{f(x) - \frac{\dot{x}^2}{f(x)} - \dot{y}^2} - \frac{\omega^2}{2} \left[(x - x_c)^2 + y^2 \right] & \left[f(x) \equiv 2\kappa x \right] \end{array}$$

Particle near Potential Minimum

Particle near BH Horizon

Regular KAM tori, no chaos

Lyapunov exponent $\lambda \sim 0.2 \kappa$ Satisfies the bound $\lambda \leq \kappa$

CONTENTS

1. Chaos bound for particle near BH

2. Chaos bound for AdS string

3. Summary

Fundamental string in AdS = "quark-anti quark pair"

Maldacena '98 Rey & Yee '98

"Square-shaped string" approximation

$$\mathcal{L}\simeq -L_{\sqrt{}}r^4(t)fig(r(t)ig)-rac{\dot{r}^2(t)}{fig(r(t)ig)}+2ig(r(t)-r_Hig)ig(f(r)=1-rac{r_H^4}{r^4}ig)$$

"Square-shaped string" approximation

"Square-shaped string" approximation

For a string near horizon,

$$\mathcal{L}\simeq rac{1}{2r_{H}^{5}L^{2}}\left[\dot{r}^{2}+\kappa^{2}ig(r(t)-r_{*}ig)^{2}
ight] \hspace{2mm}\Rightarrow\hspace{2mm}\lambda\lesssim\kappa^{2}$$

Nonlinear dynamics of string

Shake the string end points by amplitude $\boldsymbol{\varepsilon}$

 \rightarrow Nonlinear string motion

Shake the quark − quark pair
→ Nonlinear flux tube dynamics

19

20

Nonlinear dynamics of string for slightly different arepsilon

21

Nonlinear dynamics of string for slightly different \mathcal{E}

22

Nonlinear dynamics of string for slightly different arepsilon

SUMMARY

23

We got a bound on chaos from classical BH-particle system

 $\lambda \leq \kappa = 2\pi T/\hbar$

which coincides with the bound by Maldacena-Shenker-Stanford.
Independent of particle mass, external force & metric form.

Extension to string in AdS

- ✓ Unstable mode similar to the BH-particle system
- Instability growth rate: $\lambda \lesssim \kappa = 2\pi T/\hbar$
- ?: Does this govern chaotic motion of string in AdS?
- ?: Interpretation as chaos in the gauge theory?

