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はじめに：摂動論とリサージェンス理論



摂動論：H0の固有状態に基づ
いて，量子揺らぎを計算

非摂動解析：摂動パラメタの
大きな領域ではHを対角化し厳
密な固有値を得る必要あり

量子論における摂動論と非摂動解析

H = H0 + g2 H � g2 � 1 H = H0 + g2 H � g2 � 1
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摂動級数と非摂動的寄与の関係
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「摂動的寄与と非摂動的寄与は関連付かない異なる寄与」
というのが一般的な見方

摂動級数 非摂動的寄与

本当にそうだろうか？



摂動計算とボレル和[29]. The divergence encodes physical information about the saddles of ordinary integrals, or

path integrals of quantum mechanics and quantum field theory, as a consequence of Darboux’s

theorem [1, 3]. We recall a few relevant definitions and motivate (known) generalizations of

those definitions by using simple quantum mechanics.

Let P (g2) denote a perturbative asymptotic series that satisfies the “Gevrey-1” condition:

P (g2) =
⇥�

q=0

aqg
2q, Gevrey � 1 : |aq| ⇥ CRqq! (6.1)

for some positive constants C and R [5, 7]. Known examples of perturbative series that arise

in quantum mechanics and QFT satisfy the “Gevrey-1” condition [29]. We denote the Borel

transform of P (�) by BP (t) and define it as

BP (t) :=
⇥�

q=0

aq
q!
tq. (6.2)

The formal Borel transform determines “a germ of a holomorphic function” at t = 0, with

a finite radius of convergence. Next, one analytically continues the obtained germ BP (t)

to the whole complex t-plane, called the Borel plane. We also assume that the analytic

continuation of the Borel transform BP (t) is “endlessly continuable”. That roughly means

that the function is represented by an analytic function with a discrete set of singularities

(poles or cuts) on its Riemann surface. The Borel resummation of P (g2), when it exists, is

defined as the Laplace transform of the analytic continuation of the germ:

B(g2) = 1

g2

⇥ ⇥

0
BP (t)e�t/g2dt . (6.3)

In quantum theories with multiple-degenerate vacua, (but no instability of any kind), per-

turbation theory is typically a non-alternating Gevrey-1 series, hence non Borel resummable

[20, 21, 24, 26, 27, 29]. Non-Borel summability means that there is no unique answer in

perturbation theory; i.e., resummed perturbation theory does not produce a unique answer

for a physical observable which ought to be unique, for example, the ground state energy. Of

course, this is senseless. This means that perturbation theory (re-summed or otherwise) is

insu⇤cient to define the theory.

In certain cases, a perturbative sum which is not Borel summable becomes Borel summable

upon continuation g2 ⇤ �g2, see Fig. 2. In simple quantum mechanics, let us mention an

example that is directly relevant for our purpose [21]. Perturbation theory for the peri-

odic potential V (x) = 1
g2 sin

2(gx) is non-Borel summable, whereas perturbation theory for

V (x) = 1
g2 sinh

2(gx) is Borel summable. [Recall and compare with the 0-dimensional parti-

tion functions discussed in Section 1.6]. Both series are, of course, asymptotic and divergent.

The di�erence between the two is that the asymptotic series which arises in the first case is

non-alternating, whereas the series in the latter is just the alternating version of the former.

Let us refer to the Borel resummed series for the latter, Borel resummable series, as B0(g2).
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I. INTRODUCTION

d2ψ

dx2
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2m(V (x)− E)
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⟨x = a|e−iHt/!|x = b⟩ =

∫
d[x(t)] eiS[x(t)]/! (5)

⟨x = a|e−Hτ/!|x = b⟩ =

∫
d[x(τ)] e−SE [x(τ)]/! (6)

P (a → b) ≈ e−
1
!
∫ b
a dx

√
2mV (x) (7)

ボレル変換：有限の収束半径を持つ級数に変換 

ボレル和：元の摂動級数を漸近級数として持つ解析関数

摂動級数（漸近級数と仮定）は
一般に階乗発散し収束半径0 aq / q!

高次まで摂動計算を行っても意味のある情報は得られなさそうだが…
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of the Borel transform. The Borel transform method is applicable to the following class of
divergent series (called Gevrey-1)

P (g2) =
1X

q=0

aq(g2)q
, |aq| ∑ Cq!

µ
1
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, (12)

where C,A are constants. The Borel transform BP (t) is defined as

BP (t) =
1X

q=0

aq
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q
, (13)

and the Borel resummation B(g2) is defined as

B(g2) =
Z 1

0

dt

g

2
e

°t/g2
BP (t). (14)

One can easily see that the Borel resummation B(g2) reproduces the original sum P (g2) correctly
whenever one can exchange the integral and the sum. Otherwise, we need to define the sum in
terms of the Borel resummation.

As a simplified toy model, let us consider a factorially divergent series of the following one
with alternating signs

P (g2) = C

1X

q=0

q!
µ
°g

2

A

∂q

. (15)

Then the Borel transform becomes an analytic function without singularities on the positive real
axis

BP (t) = C

1X
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CA

A + t

. (16)

Therefore the Borel resummation is well-defined as an integral along the positive real axis

B(g2) =
Z 1

0

dt

g

2
e

°t/g2 CA

A + t

. (17)

This altenating factorially divergent series is a typical example of Borel summable divergent
series.

On the other hand, if perturbation series is not alternating, the factorially divergent series
gives the Borel transform with singularities on positive real axis and the Borel resummmation
has imaginary ambiguities. For instance, suppose that the perturbation series Ppert(g2) gives
non-alternating factorially divergent series like

Ppert(g2) = C

1X
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µ
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A
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. (18)

The Borel transform has a singularity on positive real axis

BPpert(t) = C
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µ
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A
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CA

A° t

, (19)

Bpert(g2) =
Z 1

0

dt

g

2
e

°t/g2 CA

A° t

. (20)

ボレル和
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ボレル変換

摂動級数（漸近級数と仮定）は
一般に階乗発散し収束半径0 aq / q!
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厳密結果

[29]. The divergence encodes physical information about the saddles of ordinary integrals, or

path integrals of quantum mechanics and quantum field theory, as a consequence of Darboux’s

theorem [1, 3]. We recall a few relevant definitions and motivate (known) generalizations of

those definitions by using simple quantum mechanics.
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for a physical observable which ought to be unique, for example, the ground state energy. Of
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幾つかの例ではボレル和が厳密結果を与える！

cf.) x^4 量子力学，N=2 SYM on S^4 Watson-Nevalinna-Sokal(80)

摂動級数（漸近級数と仮定）は
一般に階乗発散し収束半径0 aq / q!
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course, this is senseless. This means that perturbation theory (re-summed or otherwise) is

insu⇤cient to define the theory.

In certain cases, a perturbative sum which is not Borel summable becomes Borel summable

upon continuation g2 ⇤ �g2, see Fig. 2. In simple quantum mechanics, let us mention an

example that is directly relevant for our purpose [21]. Perturbation theory for the peri-

odic potential V (x) = 1
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2(gx) is non-Borel summable, whereas perturbation theory for

V (x) = 1
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2(gx) is Borel summable. [Recall and compare with the 0-dimensional parti-

tion functions discussed in Section 1.6]. Both series are, of course, asymptotic and divergent.

The di�erence between the two is that the asymptotic series which arises in the first case is

non-alternating, whereas the series in the latter is just the alternating version of the former.

Let us refer to the Borel resummed series for the latter, Borel resummable series, as B0(g2).
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一般的にはボレル変換が正の実軸上に特異点を持つ

B(g2e⌥i✏) =

Z 1e±i✏

0

dt

g2
e
� t

g2 BP (t)

摂動級数（漸近級数と仮定）は
一般に階乗発散し収束半径0 aq / q!



摂動計算とボレル和
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I. INTRODUCTION

d2ψ

dx2
=

2m(V (x)− E)

!2 ψ (1)

[
H0 + g2Hpert

]
ψ(x) = Eψ(x) (2)

S =

∫
dt

[
m

2

(
dx

dt

)2

− V (x)

]
(3)

SE =

∫
dτ

[
m

2

(
dx

dτ

)2

+ V (x)

]
(4)

⟨x = a|e−iHt/!|x = b⟩ =

∫
d[x(t)] eiS[x(t)]/! (5)

⟨x = a|e−Hτ/!|x = b⟩ =

∫
d[x(τ)] e−SE [x(τ)]/! (6)

P (a → b) ≈ e−
1
!
∫ b
a dx

√
2mV (x) (7)

積分路の不定性に付随して 

符合の不定性を持つ虚部が出現

この摂動ボレル和の不定虚部こそ非摂動寄与の情報を含む！
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Im[B(g2)] ⇡ e
� A

g2

B(g2e⌥i✏) = Re[B(g2)]± iIm[B(g2)]

摂動級数（漸近級数と仮定）は
一般に階乗発散し収束半径0 aq / q!



なぜ非摂動寄与の情報が摂動論に？

• 不確定特異点z=∞で複数の漸近級数解 → 一般に階乗発散 

• 常微分方程式の解は各漸近級数のボレル和の総和 = トランス級数 

• 特定のarg[z]でトランス級数パラメタ σ が不連続 = ストークス現象 

• 解の連続性から各漸近級数が結びつく

Ecalle (81)

◆ 常微分方程式のリサージェンス理論

冪級数型: 指数×冪級数型:

σ：トランス級数パラメタ

：ストークスパラメタs'+(z;�) $ '�(z;� + s)

'+(z;�) = '�(z;� + s)

F


z,'(z),

d'

dz
(z), ...,

dk'

dzk
(z)

�
= 0

Tatsuhiro Misumi

I. RESURGENCE

e−nAzΦn(z) (1)

ϕ±(z;σ) = S±Φ0(z) +
∑

n

σne−nAzS±Φn(z) (2)

S+Φ0(z)− S−Φ0(z) ≈ se−AzΦ1(z) (3)

Sθ = Id−Discθ = exp
[∑

e−ωθz∆ωθ

]
(4)

e−ωθz∆ωθϕ(z;σ) ∝ ∂σϕ(z;σ) (5)

SθΦn = exp[e−Az∆A]Φn =
∞∑

l=0

(
n+ l
n

)
s1e

−lAzΦn+l (6)
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I. RESURGENCE

F [z,ϕ(z), ...,ϕ(k)(z)] = 0 (1)
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'00 � z' = 0ex.) エアリー方程式

' = Ai(z) ⇡ e�
2
3 z

3
2 S±

X
anz

� 3
2n + � e

2
3 z

3
2 S±

X
bnz

� 3
2n

(z = ∞に不確定特異点)

0  arg[z]  2⇡

Re[Ai(z)]



なぜ非摂動寄与の情報が摂動論に？

◆リサージェンス理論とAlien calculus

・特異点方向上下のボレル和を繋ぐ群作用：Stokes automorphism

Ecalle (81)

ここでSθは特異点方向 θでの不連続性に関係する Stokes automorphismであり，θ方向の各特異
点 ωθでの不連続性を表す微分演算Alien derivative ∆ωθ によって書き表すことができる．Matter

の質量をm = (2n+ 1)πとセットした場合，つまり正の実軸上に特異点がある場合に，この関係
にどのような変化が起きるかが興味深い．以下，用語の説明を兼ねて，Alien calculusの基本につ
いて述べる．

2.1 Alien calculusについての基本事項：
Trans-series： Trans-series F (z,σ)は各セクターの寄与を F (n)(z)として以下で定義される

F (z,σ) =
∞∑

n=0

σnF (n)(z) , (2)

F (n)(z) = e−nAzz−nβ
∞∑

q=0

F (n)
q z−q−1 . (3)

特に，各セクター寄与の級数部分をΦn(z)として，F (n)(z) = e−nAzΦn(z) と表すことがある．こ
こで z ∼ 1/g2，A: Saddle-point action，σ: Trans-series parameter，F (z,σ):物理量や分配関数，
と考えれば良い．ここでは one-parameter trans-seriesの場合に集中する．

Stokes Automorphism と Alien derivative： Stokes automorphismはストークス線の上下
でのボレル和を繋ぐ群作用である．特異点方向 θについての Stokes automorphism Sθ は以下で
定義される．

Sθ+ = Sθ− ◦Sθ , (4)

Sθ = Id−Discθ = exp

[
∑

ωθ

e−ωθz∆ωθ

]
. (5)

ここで，∆ωθ は特異点方向 θのある特異点 ωθ についてのAlien derivativeであり，以下のような
交換関係を満たす．

[∆ωθ , ∂z] = −ωθ∆ωθ . (6)

今後の計算のためにDotted Alien derivative ∆̇ωθ ≡ e−ωθ∆ωθ を定義することで，以下の交換関係
が満たされることがわかる．

[∆̇ωθ , ∂z] = 0 , (7)

[∆̇ωθ , ∂σ] = 0 , (8)

[∂z, ∂σ] = 0 . (9)

Bridge equation： Bridge equationはAlien derivative(Alien calculus)と一般の演算を関係づ
ける (bridgeする)方程式である．まず，∆̇ωθ と ∂σが交換することから ([∆̇ωθ ,σ] = 0)，これらを
trans-seriesに作用させたものは比例関係にあることがわかる．したがって以下が得られる．

∆̇ωθF (z,σ) = Sωθ(σ)∂σF (z,σ) . (10)

2

・各特異点について外微分作用素：Alien derivative
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2

・Alien calculusと通常の微分を関係付ける方程式：Bridge equation

・Bridge eq.の左右辺比較により各漸近級数間の関係が判明！

[�!✓ , @�] = 0
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なぜ非摂動寄与の情報が摂動論に？

ある種のリサージェンス構造は量子論にも存在すると考えられ，
摂動ボレル和が非摂動的寄与の情報を含む．

Ecalle (81)

摂動ボレル和の虚部不定性 非摂動的寄与

摂動級数の高次項と非摂動寄与の低次項が関係
摂動級数から非摂動寄与を原理的には求めることが可能！

・コーシーの積分定理による摂動-非摂動関係の抽出

Tatsuhiro Misumi

I. RESURGENCE
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摂動的ボレル和とBion配位との不定虚部相殺



例) 摂動級数が交代級数の場合

特異点は負の実軸上

of the Borel transform. The Borel transform method is applicable to the following class of
divergent series (called Gevrey-1)

P (g2) =
1X

q=0

aq(g2)q
, |aq| ∑ Cq!

µ
1
A

∂q

, (12)

where C,A are constants. The Borel transform BP (t) is defined as

BP (t) =
1X

q=0

aq

q!
t

q
, (13)

and the Borel resummation B(g2) is defined as

B(g2) =
Z 1

0

dt

g

2
e

°t/g2
BP (t). (14)

One can easily see that the Borel resummation B(g2) reproduces the original sum P (g2) correctly
whenever one can exchange the integral and the sum. Otherwise, we need to define the sum in
terms of the Borel resummation.

As a simplified toy model, let us consider a factorially divergent series of the following one
with alternating signs

P (g2) = C

1X

q=0

q!
µ
°g

2

A

∂q

. (15)

Then the Borel transform becomes an analytic function without singularities on the positive real
axis

BP (t) = C

1X

q=0

µ
°t

A

∂q
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and an anti-fractional instanton, we find that the interaction between them strongly depends on

the relative phase of constituents. We calculate the neutral bion contribution in the CPN−1 model,

based on the interaction potential with the quasi moduli parameter corresponding to the relative

phase between the fractional instanton and anti-instanton. We find that this calculation gives a

correction factor compared to the neutral bion amplitude obtained in the sine-Gordon quantum

mechanics [9, 10].

This paper is organized as follows. In Sec. II, we review instantons and their interactions in the

quantum mechanics with sine-Gordon potential and the Borel summation. In Sec. III we calculate

amplitudes of multi-instanton configurations in sine-Gordon quantum mechanics by integrating out

the moduli parameters. In Sec. IV we discuss the results from the uniform WKB calculations, and

show that they completely agree with the instanton moduli calculations. In Sec. V we discuss the

neutral bion contributions in the compactified CPN−1 model based on the interaction potential

including the relative phase parameter. Section VI is devoted to a summary and discussion. In

Appendix A we give some details of four-instanton calculations.

II. QUANTUM MECHANICS WITH THE SINE-GORDON POTENTIAL

In this article, we focus on the sine-Gordon quantum mechanics described by the Schrödinger

equation

Hψ(x) = −
1

2

d2

dx2
ψ(x) +

1

8g2
sin2(2gx)ψ(x) = E ψ(x) , (1)

where we follow the notation in Refs. [12, 33] except g is replaced by g2 here [52]. The Euclidian

Lagrangian for the sine-Gordon quantum mechanics is given by [53]

L =
1

2

(

dx

dt

)2

+ V (x), V (x) =
1

8g2
sin2(2gx) . (2)

In the g2 → 0 limit, it reduces to the Schrödinger equation of the harmonic oscillator.

The energy eigenvalues of periodic potentials split into bands of states. Within each band, they

are labeled by the Bloch angle θ ∈ [0,π] defined by

ψ

(

x+
π

2g

)

= eiθψ(x) . (3)

In this article, we are interested in the lowest band, although excited bands can be treated similarly.

The energy eigenvalue E of the lowest band can be expressed in terms of the path-integral

E = lim
β→∞

−1

β
Tre−βH = lim

β→∞

−1

β

∫

x(t=−β/2)=x(t=β/2)
Dx(t) e−S+iQθ. (4)
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C. 1 instanton + 1 anti-instanton

The amplitude of one instanton and one anti-instanton amplitude is composed of two configura-

tions [IĪ] and [ĪI], as shown in Fig. 2. In these cases, the interaction between the two constituents

is attractive, and the quasi moduli integral is ill-defined. Therefore we introduce the Bogomolnyi–

Zinn-Justin (BZJ) prescription [29, 30]: we first evaluate the integral by taking −g2 > 0, and then

we analytically continue the result from −g2 > 0 back to g2 > 0 in the complex g2 plane. This

procedure provides the imaginary ambiguity depending on the path of the analytic continuation

as −g2 = e∓iπg2.











!!!
!

!!!
!

[IĪ]











!!!
!

!!!
!

[ĪI]

FIG. 2: A schematic figure of an example of one-instanton and one anti-instanton amplitude ([IĪ], [ĪI]).

Each horizontal line stands for the vacuum in the sine-Gordon potential.

The amplitude of one-instanton and one anti-instanton configuration [IĪ] corresponding to the

left of Fig. 2 is obtained as

[IĪ]ξ−2 =

∫ ∞

0
dR exp

(

−
2

−g2
e−R − ϵR

)

|g2|≪1−→
(

−g2

2

)ϵ

Γ(ϵ)

−g2=e∓iπg2−→ −
(

γ + log
2

e∓iπg2

)

+ O

(

1

ϵ

)

+ O(ϵ)

= −
(

γ + log
2

g2

)

∓ iπ + O

(

1

ϵ

)

+ O(ϵ) , (32)

where we perform the integral in the first line by considering −g2 > 0, and in the second line

analytically continue −g2 > 0 back to g2 > 0 in the complex g2 plane [29, 30]. The third line

shows a two-fold ambiguous expression of −g2 depending on the path of analytic continuation as

−g2 = e∓iπg2. As with the two-instanton case, we have subtracted the divergent part O(1/ϵ) while

the O(ϵ) term disappears in the ϵ → 0 limit.

実古典解ではないが，経路積分に含まれる配位
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FIG. 11: The euclidean action density s(x1, x2) of neutral bion configurations for λ1 = 1/1000,λ2 = 1/1000

and φ = π/4 in the CP
1
model on R

1
× S

1
. The same action density is depicted in two ways, as a function

of x1, x2 (left) and x1 (right). There is no x2 dependence in the action density, with x2 being a coordinate

of the compactied dimension.

In that case, we obtain the angular coordinate fields of S2 as

Φ(x1, x2) = φ1 −
πx2
L

, cot
Θ(x1, x2)

2
= λ1e

−
πx1
L ∓ λ2e

πx1
L . (108)

This configuration starts from N at x1 = −∞. For the upper sign, it goes through S at

x1 = −L
π log(λ1λ2) and reaches to N with Θ = 2π at x1 = ∞, namely it winds once around the

great circle. The configuration represents the double instanton configuration of the sine-Gordon

quantum mechanics as shown in Fig.1. For the lower sign, the configuration returns back to N

with Θ = 0 at x1 = ∞ approaching but never reaching S at any point in −∞ < x1 < ∞. This

clearly represents the instanton and anti-instanton configuration [IĪ] of the sine-Gordon quantum

mechanics, as shown in the left panel of Fig. 2. The sine-Gordon quantum mechanics captures

only field configurations that can cover the (part of) S2 in the following specific fashion : When

x1 is varied with fixed x2, Θ goes along the great circle (namely fixed Φ), whereas x2 variation

with fixed x1 makes a rotation of Φ with the constant velocity by an amount π at fixed Θ. The

first homotopy group π1 for the sine-Gordon model is one for the upper sign and zero for the lower

sign, but the second homotopy group π2 for the CP 1 model is zero for the both cases. In Fig. 12,

we show the instanton–anti-instanton and instanton-instanton configurations in the sine-Gordon

quantum mechanics corresponding to ei(φ2−φ1) = ∓1 in Eq. (107), and how the corresponding

configuration of the CP 1 model in Eq.(108) cover the sphere S2. Here, each of fractional instanton
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・Bogomolny--Zinn-Justin(BZJ)処方

yield an imaginary part for [BB], but does yield an imaginary part for [BB]. The quasi-zero

mode integrals are of the form

I(g2) =

� ⇤

0
d⌃ exp (�V (⌃)) for [BB], and (6.36)

⇥I(g2) =
� ⇤

0
d⌃ exp (+V (⌃)) for [BB], (6.37)

where

V (⌃) = (µB, µB)
8⌅

g2
e�⇥⇤ (6.38)

and µB = �i � �j ⌃ �⇧
r is the charge of the bion Bij .

This type of integral, as noted earlier, is addressed in bosonic quantum mechanics by

Bogomolny [19]. Both integrals are divergent at large separation, and the latter is dominated

by ⌃ ⇧ 0 where molecular configurations are meaningless. The first of these problems is due

to double-counting of the uncorrelated [B]-[B] or [B]-[B] events, and is subtracted o⇥.

C̃�

C̃+

g2

Figure 11. Defining left (right) bion-anti-bion amplitude [BijBij ]�=0± , we proceed as in the construc-
tion of left (right) Borel resummation B0,�=0± .

The short-distance domination of ⇥I(g2) can be taken care of by modifying the integration

contour, or by rotating g2 ⇧ �g2, where the bion-anti-bion interaction becomes repulsive,

and continuing the integral back to positive |g2|+i0±. The result, as was the case with (6.34),

is two-fold ambiguous:

[BijBij ]�=0± = Re [BijBij ] + i Im [BijBij ]�=0± ⌅ e�4S0 ± i⇧ e�4S0 (6.39)

Consider a typical observable in CPN�1 theory with Nf ⇤ 1 fermions. We expect that this

observable will receive contributions to all orders in perturbation theory, as well as non-

perturbative contributions. Denote the lateral Borel summation for perturbation theory by

B0,�=0± . Then write g2 = |g2|ei�, where ⇥ is the phase of the complexified coupling. For QFT

to make sense, these two ambiguities must cancel:

ImB0,�=0± + Im [BB]�=0± = 0 , up to e�6S0 (6.40)

– 62 –
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C. 1 instanton + 1 anti-instanton

The amplitude of one instanton and one anti-instanton amplitude is composed of two configura-

tions [IĪ] and [ĪI], as shown in Fig. 2. In these cases, the interaction between the two constituents

is attractive, and the quasi moduli integral is ill-defined. Therefore we introduce the Bogomolnyi–

Zinn-Justin (BZJ) prescription [29, 30]: we first evaluate the integral by taking −g2 > 0, and then

we analytically continue the result from −g2 > 0 back to g2 > 0 in the complex g2 plane. This

procedure provides the imaginary ambiguity depending on the path of the analytic continuation

as −g2 = e∓iπg2.
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FIG. 2: A schematic figure of an example of one-instanton and one anti-instanton amplitude ([IĪ], [ĪI]).

Each horizontal line stands for the vacuum in the sine-Gordon potential.

The amplitude of one-instanton and one anti-instanton configuration [IĪ] corresponding to the

left of Fig. 2 is obtained as

[IĪ]ξ−2 =

∫ ∞

0
dR exp

(

−
2

−g2
e−R − ϵR

)

|g2|≪1−→
(

−g2

2

)ϵ

Γ(ϵ)

−g2=e∓iπg2−→ −
(

γ + log
2

e∓iπg2

)

+ O

(

1

ϵ

)

+ O(ϵ)

= −
(

γ + log
2

g2

)

∓ iπ + O

(

1

ϵ

)

+ O(ϵ) , (32)

where we perform the integral in the first line by considering −g2 > 0, and in the second line

analytically continue −g2 > 0 back to g2 > 0 in the complex g2 plane [29, 30]. The third line

shows a two-fold ambiguous expression of −g2 depending on the path of analytic continuation as

−g2 = e∓iπg2. As with the two-instanton case, we have subtracted the divergent part O(1/ϵ) while

the O(ϵ) term disappears in the ϵ → 0 limit.

9

B. 2 instantons
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[II]

FIG. 1: A schematic figure of an example of two instanton configurations [II]. Each horizontal line stands

for the vacuum in the sine-Gordon potential.

The amplitude of two instantons shown in Fig. 1 is obtained as

[II]e−2iθξ−2 =

∫ ∞

0
dR exp

(

−
2

g2
e−R − ϵR

)

=

(

g2

2

)ϵ ∫ 2/g2

0
ds e−ssϵ−1

|g2|≪1−→
(

g2

2

)ϵ

Γ(ϵ)

= −
(

γ + log
2

g2

)

+ O

(

1

ϵ

)

+ O(ϵ) , (29)

where γ is the Euler constant and ξ is an instanton factor defined by

ξ ≡ e−SI/
√

πg2 = e−1/(2g2)/
√

πg2. (30)

Here we have neglected terms of order O(g2) or higher. To simplify the formula, we divide the

amplitude by ξ2 and e2iθ. Precisely speaking, the interaction energy between instantons at small

separation R ≪ 1 may not be precisely represented by the potential in Eq.(26). However, our

result is unchanged as long as |g2| ≪ 1 is satisfied. We need to subtract the divergent term O(1/ϵ)

while the O(ϵ) term disappears in the ϵ → 0 limit. The contribution from this amplitude to the

energy eigenvalue of the lowest band is then given by

△E(2,0) = e2iθξ2
(

γ + log
2

g2

)

, (31)

where the superscript (2, 0) stands for two-instanton and zero–anti-instanton amplitude. We note

that the contribution from the two anti-instanton amplitude is obtained by replacing e2iθ by e−2iθ.
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C. 1 instanton + 1 anti-instanton

The amplitude of one instanton and one anti-instanton amplitude is composed of two configura-

tions [IĪ] and [ĪI], as shown in Fig. 2. In these cases, the interaction between the two constituents

is attractive, and the quasi moduli integral is ill-defined. Therefore we introduce the Bogomolnyi–

Zinn-Justin (BZJ) prescription [29, 30]: we first evaluate the integral by taking −g2 > 0, and then

we analytically continue the result from −g2 > 0 back to g2 > 0 in the complex g2 plane. This

procedure provides the imaginary ambiguity depending on the path of the analytic continuation

as −g2 = e∓iπg2.











!!!
!

!!!
!

[IĪ]











!!!
!

!!!
!

[ĪI]

FIG. 2: A schematic figure of an example of one-instanton and one anti-instanton amplitude ([IĪ], [ĪI]).

Each horizontal line stands for the vacuum in the sine-Gordon potential.

The amplitude of one-instanton and one anti-instanton configuration [IĪ] corresponding to the

left of Fig. 2 is obtained as

[IĪ]ξ−2 =

∫ ∞

0
dR exp

(

−
2

−g2
e−R − ϵR

)

|g2|≪1−→
(

−g2

2

)ϵ

Γ(ϵ)

−g2=e∓iπg2−→ −
(

γ + log
2

e∓iπg2

)

+ O

(

1

ϵ

)

+ O(ϵ)

= −
(

γ + log
2

g2

)

∓ iπ + O

(

1

ϵ

)

+ O(ϵ) , (32)

where we perform the integral in the first line by considering −g2 > 0, and in the second line

analytically continue −g2 > 0 back to g2 > 0 in the complex g2 plane [29, 30]. The third line

shows a two-fold ambiguous expression of −g2 depending on the path of analytic continuation as

−g2 = e∓iπg2. As with the two-instanton case, we have subtracted the divergent part O(1/ϵ) while

the O(ϵ) term disappears in the ϵ → 0 limit.

摂動的ボレル和の不定虚部              を見事に相殺！
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複素化理論の固定点としてのBion配位



トンネル現象 行き帰り遷移

xI(�) = tanh
� � �0

2

これらの非摂動寄与がなぜ重要？

・Bion配位は複素化された理論のHolomorphic EOMの古典解
・複素解のOne-loop det + 準モジュライ積分 がBZJ処方と等価

Behtash, Dunne, Schafer, Sulejmanpasic, Unsal(15)
Fujimori, Kamata, TM, Nitta, Sakai (16)(17)

結果の特異性(ストークス線)の避け方                        に依存して
不定虚部が出現し，これが摂動ボレル和の不定虚部を相殺！

g2 ! g2e±i✏

Bion

e�SI e�2SI (Re± iIm)

zIĪ(⌧) =
zT
2

coth

!⌧0
2


tanh

!(⌧ + ⌧0)

2

� tanh

!(⌧ � ⌧0)

2

�

zT , ⌧0 2 C



2

FIG. 1: Real and complex solutions in the inverted tilted double well
potential. The inverted potential (on the real axis) is shown in black,
the real bounce and associated critical and turning points are shown
in red, and the pair of complex bions and turning and critical points
are blue. The blue points correspond to zcr

1 and zT ,z⇤T in (6). Note
that the motion takes place in the real and imaginary parts of the
complex potential, as explained in the text.

where we have used the Cauchy-Riemann equations ∂xVr =
∂yVi, and ∂yVr = �∂xVi. An important aspect of (2) is that it
does not describe an ordinary two-dimensional classical me-
chanical system: the holomorphic classical mechanics is not
the same as the motion of a particle in the two-dimensional
inverted potential �Vr(x,y). Instead of the usual Newton
equations with force ~—Vr(x,y), the force in the x-direction is
due to —xVr(x,y) while the force in the y-direction is due to
�—yVr(x,y). This has interesting consequences.

Supersymmetric quantum mechanics: Consider supersym-
metric quantum mechanics with the superpotential W (x)

S =
Z

dt
� 1

2 ẋ
2 + 1

2 (W 0)2 +[ȳẏ+ pW 00ȳy]
�
, (3)

corresponding to p = 1. The parameter p will be used to
deform the theory away from the supersymmetric point [9].
We choose W (x) with more than one critical point, so that
there will be real instantons. By projecting to fermion number
eigenstates one obtains a pair of Hamiltonians H± [24]:

H± = 1
2 p̂

2 +V±(x) , V±(x) =
1
2 (W 0(x))2 ± p

2 W 00(x) . (4)

In the following we consider superpotentials of the form
W (x) = 1

gW (
pgx), and rescale x =pgx. Then the Euclidean

action takes the form SE = 1
g
R

dt( 1
2 ẋ2+V±(x)). We work with

the bosonized description (4). Note that compared to the orig-
inal bosonic potential 1

2 (W
0)2 the bosonized theory contains

an O(g) term that arises from integrating out the fermions.
The quantum modified holomorphic equations of motion in
the inverted potential �V+(z) is

d2z
dt2 =W 0(z)W 00(z)+

pg
2

W 000(z) . (5)

FIG. 2: Complex bion solution in supersymmetric quantum mechan-
ics with a double well potential. The black and red lines show the
real and imaginary part of the solution for pg = 1 · 10�6. The char-
acteristic size of the solution is Re[2t0]' 1

2 log 16
pg . For larger values

of pg the two tunneling event merge.

Double well potential: Consider W (x) = x3/3� x, so that
V (x) is an asymmetric double well potential with an O(g)
“tilt”. The ground state energy of the system is zero to all or-
ders in perturbation theory, but non-perturbatively supersym-
metry is spontaneously broken and the ground state energy
is non-zero and positive [24]. Note that the positivity of the
ground state energy is a consequence of the SUSY algebra,
H = 1

2{Q, Q̄}, where Q and Q̄ are the SUSY generators.
In the original formulation (3) this can be understood as the

contribution from approximate instanton-anti-instanton solu-
tions of the bosonic potential 1

2 (W
0)2 [9]. In the bosonized

version we seek classical solutions in the inverted potential
�V+. However, the real equations of motion in the inverted
potential have no finite action configurations except for the
trivial perturbative saddle, and an exact (real) bounce solu-
tion. But this bounce is related to the false vacuum and is
not directly relevant for ground state properties, which are de-
termined by saddles starting at the global maximum of the
inverted potential. But the real motion of a classical particle
starting at such a global maximum is unbounded, and has in-
finite action.

On the other hand, the holomorphic Newton’s equation (5)
does support finite action solutions starting from the global
maximum. There are exact finite action complex solutions
that start at the global maximum of the inverted potential and
bounce back from one of the two complex turning points,
whose real part is located near the top of the local maximum,
see Fig. 1. We refer to this as the “complex bion” solution:

zcb(t) = zcr
1 �

zcr
1 � zT

2
coth

⇣wcbt0
2

⌘
tanh

✓
wcb(t + t0)

2

◆

� tanh
✓

wcb(t � t0)
2

◆�
, (6)

where zcb(±•) = zcr
1 is the global maximum of the inverted

potential, and zT =�zcr
1 ± i

p
pg/(�zcr

1 ) are the complex turn-

これらの非摂動寄与がなぜ重要？ Behtash, Dunne, Schafer, Sulejmanpasic, Unsal(15)
Fujimori, Kamata, TM, Nitta, Sakai (16)(17)

トンネル現象

Bion

xI(�) = tanh
� � �0

2

摂動論と合わせた最終的な結果は「超対称性の自発的破れ」等
非摂動的な物理の記述にも成功している！
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・Bion配位は複素化された理論のHolomorphic EOMの古典解
・複素解のOne-loop det + 準モジュライ積分 がBZJ処方と等価



· エアリー積分
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1/g2 = 1

1/g2 = i/2

どうして複素古典解が必要か？

0次元積分における最急降下法では積分径路を変形し
複素固定点に繋がる径路(thimble)に分解

経路積分においても複素固定点を考えるのは自然

Re[e�i(�3/3+�/g2)]



どうして複素古典解が必要か？
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arg[g2] = 0+

最急降下法(Thimble分解)における複素固定点の寄与

· エアリー積分

複素平面上の2つの複素固定点
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· エアリー積分

複素平面上の2つの複素固定点

�
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g

� i

g

arg[g2] = 0+

どうして複素古典解が必要か？

最急降下法：元の積分径路を，固定点を
通り，虚部一定の最急降下径路に分解

C =
X

�

n�J�
最急降下径路分解 

= Thimble分解
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最急降下法(Thimble分解)における複素固定点の寄与



arg[g2] = 0+

Re[S]  Re[S0]

どうして複素古典解が必要か？

· エアリー積分

J� 最急降下径路

n� = hK�, Ci 最急上昇径路Kと 

元の径路との交叉数

Ai(g�2
) =

Z 1

�1
d� exp


�i

✓
�3

3

+

�

g2

◆�

C =
X

�

n�J�

最急降下法(Thimble分解)における複素固定点の寄与
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· エアリー積分

n+ = hK+, Ci = 0

n� = hK�, Ci = 1

arg[g2] = 0+

C = J�C =
X

�

n�J�

どうして複素古典解が必要か？

arg[g2] = 0+

K�

J+

K+

J�

最急降下法(Thimble分解)における複素固定点の寄与

までこの分解を維持arg[g2] =
2⇡

3
�



どうして複素古典解が必要か？

· エアリー積分

C =
X

�

n�J�

ストークス現象：特定のarg[g^2]で
thimble分解が不連続変化

最急降下法(Thimble分解)における複素固定点の寄与

arg[g2] =
2⇡

3
+

arg[g2] =
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3
+

n+ = hK+, Ci = 1

n� = hK�, Ci = 1

C = J+ + J�
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arg[g2] = �2⇡

3
! ⇡

どうして複素古典解が必要か？

ストークス現象

ストークス現象：特定のarg[g^2]で
thimble分解が不連続変化

摂動ボレル和の不定性はストークス線上
でのthimble分解の不定性に対応！

· エアリー積分

C = J�

cf.) Real-time formalism, Finite-density lattice system

最急降下法(Thimble分解)における複素固定点の寄与

C = J+ + J�

arg[g2] =
2⇡

3
+arg[g2] =

2⇡

3
�



· 変形ベッセル積分

どうして複素古典解が必要か？

arg[λ]=0での 

ストークス現象

・各Thimbleがトランス級数の各セクター（摂動+非摂動）に対応 

・摂動寄与 　  が虚部を持ち， arg[λ]=0± で不定になる 

・適切にThimbleの寄与を加えることで不定性のない結果が得られる
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Bionトランス級数としての厳密結果



厳密結果は複素解トランス級数で完全再現 Fujimori, Kamata, TM, 
Nitta, Sakai (16)(17)

Ex.) CPN量子力学の基底エネルギー

E(2)
= g2 �m

coth

m
g2

sinh

2 m
g2

2

4
Ei

⇣
2m
g2

⌘
+ Ei

⇣
� 2m

g2

⌘

2

� � � log

2m

g2

3

5
2

Lagrangian

g2L = G
[
|∂tϕ|2 − |mϕ|2 + iψ̄Dtψ

]
− ϵ

∂2µ

∂ϕ∂ϕ̄
ψψ̄, (1)

where ϕ is the inhomogeneous coordinate, G =
∂ϕ∂ϕ̄ log(1 + |ϕ|2) is the Fubini-Study metric, Dt = ∂t +
∂tϕ∂ϕ logG is the pull back of the covariant derivative
and µ = m|ϕ|2/(1 + |ϕ|2) is the moment map associated
with the U(1) symmetry ϕ → eiθϕ. The parameter ϵ is
the boson-fermion coupling and the Lagrangian becomes
supersymmetric at ϵ = 1. Since the fermion number
F = Gψψ̄ commutes with the Hamiltonian, the Hilbert
space can be decomposed into two subspaces with F = 1
and F = 0. By projecting quantum states onto the sub-
space which contains the ground state (F = 1), we obtain
the bosonic Lagrangian L = |∂tϕ|2/(g2(1 + |ϕ|2)2) − V
with the potential

V =
1

g2
m2|ϕ|2

(1 + |ϕ|2)2 − ϵm
1− |ϕ|2

1 + |ϕ|2 . (2)

We note that θ(≡ −2 arctan |ϕ|) = 0,π are global and
metastable vacua respectively.
For ϵ = 1, the ground state wave function Ψ0 preserv-

ing the SUSY is given as a zero energy solution of the
Schrödinger equation

Hϵ=1Ψ0 =

[
−g2(1 + |ϕ|2)2 ∂

∂ϕ

∂

∂ϕ̄
+ Vϵ=1

]
Ψ0 = 0. (3)

It is exactly solved as Ψ0 = ⟨ϕ|0⟩ = exp(−µ/g2). For ϵ ≈
1, the leading order correction to the ground state wave
function can be obtained by expanding the Schrödinger
equation with respect to small δϵ ≡ ϵ − 1 as ⟨ϕ|δΨ⟩.
Correspondingly, the ground state energy E can also be
expanded

E = δϵE(1) + δϵ2 E(2) + · · · . (4)

These expansion coefficients can be determined by the
standard Rayleigh-Schrödinger perturbation theory as
E(1) = ⟨0|δH|0⟩/⟨0|0⟩, E(2) = −⟨δΨ|Hϵ=1|δΨ⟩/⟨0|0⟩, · · ·
with δH = H − Hϵ=1. We find that these coefficients
E(i) are real without imaginary ambiguities and can be
expanded in absolutely convergent power series with re-
spect to the nonperturbative exponential exp(−2m/g2)

E(i) =
∞∑

p=0

E(i)
p exp(−2pm/g2), (5)

where the zero-th term E(i)
0 corresponds to the pertur-

bative contributions on the trivial vacuum (perturbative
vacuum). The coefficients of E(1) [21] are

E(1)
0 = −m+ g2, E(1)

p = −2m, (p ≥ 1). (6)

If the coefficients of E(2) are expanded in powers of g2,
they give factorially divergent asymptotic series, which

can be Borel-resummed. Hence we rewrite the coefficient
in the form of the Borel transform (See Appendix. A for
the details of calculations.) as

E(2)
0 = g2 + 2m

∫ ∞

0
dt

e−t

t− 2m
g2±i0

, (7)

E(2)
p = 2m

∫ ∞

0
dt e−t

{
(p+ 1)2

t− 2m
g2±i0

+
(p− 1)2

t+ 2m
g2

}

+ 4mp2
(
γ + log

2m

g2
± πi

2

)
, (p ≥ 1). (8)

Note that the imaginary ambiguities associated to the

Borel resummation is manifest in the first term of E(2)
p

with g2±i0, which is compensated by the imaginary part

±iπ/2 in the last term of E(2)
p+1, reproducing the original

real E(2) precisely.
We can now recognize the full resurgence structure to

all orders of nonperturbative exponential: imaginary am-
biguity of the non-Borel summable divergent perturba-
tion series on the p-bion background in the first term of

E(2)
p is cancelled by the imaginary ambiguity of the clas-

sical contribution of (p+1)-bion contribution in the last

term of E(2)
p+1. We note the absence of powers of g2 in

the imaginary ambiguity, which will allow us to recover
non-Borel summable perturbation series on the p-bion
background completely from the (p+1)-bion contribution
through the dispersion relation, without computing per-
turbative corrections around the multi-bion background
explicitly. Moreover, if we observe that E(2)/m is an
even function of m/g2, we can also understand the pres-
ence of Borel-summable part (second term of the first
line in Eq.(8)). Thus all the terms can now be repro-
duced through resurgence relation and the sign change
of m/g2, if we can compute all the classical p-bion con-
tributions.

Multi-bion solutions : Nonperturbative contribu-
tions to the ground state energy come from the saddle
points of the path integral Z =

∫
DϕDϕ̃ e−SE ∼ e−βE

(for large β), where we have complexified the degrees of
freedom by regarding ϕ ≡ ϕC

R + iϕC
I and ϕ̃ ≡ ϕC

R − iϕC
I

as independent holomorphic variables, and imposed the
periodic boundary condition ϕ(τ + β) = ϕ(τ) and for

ϕ̃. The Euclidean action SE =
∫ β
0 dτ [∂τϕ∂τ ϕ̃/(g2(1 +

ϕϕ̃)2) + V (ϕϕ̃)] has two conserved Noether charges as-
sociated with the complexification of the Euclidean time
translation τ → τ + a and the phase rotation (ϕ, ϕ̃) →
(eibϕ, e−ibϕ̃) (a, b ∈ C). Using the corresponding con-
servation laws, we can obtain the following solution of
the equation of motion with nontrivial contribution in a
β → ∞ limit,

ϕ = eiφc
f(τ − τc)

sin2 α
, ϕ̃ = e−iφc

f(τ − τc)

sin2 α
, (9)

where (τc,φc) are complex moduli parameters associated
with the symmetry and f(τ) is the elliptic function

f(τ) = cs(Ωτ, k) ≡ cn(Ωτ, k)/sn(Ωτ, k), (10)
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厳密結果 トランス級数

摂動的寄与

非摂動的寄与
複素解の半古典寄与複素解背景の摂動寄与

' ⇡ ei�0cs[⌦(⌧ � ⌧0), k]

'̃ ⇡ e�i�0cs[⌦(⌧ � ⌧0), k]
複素p-bion解

トランス級数内の各セクターの不定虚部は順次相殺され厳密結果に！



・全ての複素古典解寄与の和では，不定虚部は相殺され厳密結果を得る

・複素古典解とトランス級数に基づく展開で非摂動的定式化が可能！？
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Neutral bions:

Figure 10. Upper figure: The conjectured structure of the Borel plane for CPN�1 on R2. Lower
figure: The semi-classical singularities associated with the neutral bion molecules in CPN�1 on small
R � S1. For Nf = 0, the weak-coupling regime has an extra singularity closer to origin than the
leading renormalon pole on R2. For Nf ⇥ 1, the location of the semi-classical and non-semi-classical
renormalon singularities coincide. Although the theory moves from a weakly coupled description to
a strongly coupled one, the structure of the Borel plane singularities either do not change at all or
change extremely mildly. We take this as evidence that the neutral bion molecules are the semi-classical
realization of renormalons. This also gives us hope that even the theory on R2 may potentially be
solvable at arbitrary N .

ambiguities that arise in the Borel summation of the perturbation theory cancel with the

ambiguities of these molecular events. On the other hand, in a theory with fermions, the

appearance of the first non-perturbative ambiguity is delayed by one order. A few examples

of the topological configurations and the (non)existence of their ambiguities are given in the

following lists:

Nf = 0 : {Ki, [Bij ], [Bii]�=0± , [BijBji]�=0± , [BijBjkBki]�=0± , . . . , [II]�=0± , . . .}
Nf ⇥ 1 : {Ki, [Bij ], [Bii], [BijBji]�=0± , [BijBjkBki]�=0± , . . . , [II], . . .} (6.14)

In other words, when Nf = 0 we first see the non-perturbative ambiguities in the neutral bion

amplitude [Bii], while for Nf ⇥ 1 the non-perturbative ambiguities first arise in the neutral

correlators of two bions. The location of the ambiguities in the semi-classical molecules

matches the location of the renormalon singularities on R2 for Nf ⇥ 1 theories, and for

Nf = 0, the semi-classics has an extra singularity closer to the origin than the leading

renormalon pole on R2. See Figure 10.

The elegance of this analysis is that a very di⇥cult problem in QFT, tied with the renor-

malon singularities, reduces to a relatively simpler problem in quantum mechanics without
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量子論での各種の例
• 1D Double-well, Sine-Gordon, CPN 模型

• 2D CPN シグマ模型 with compactification

• 3D Chern-Simons理論 with exact results

• 4D N=2 超対称ゲージ理論 on S^4 

• 行列模型 & 位相的弦理論

ボレル平面上の特異点が複素古典解に対応． 

そこからの寄与の和が厳密結果を与える!

Schiappa, Marino, Aniceto(13) Honda(16)

Gukov, Marino, Putrov(16) Honda(16)

Argyres, Dunne, Unsal(13) TM, Nitta, Sakai(14)

Betahsh,et,al(15) Fujimori, Kamata, TM, Nitta, Sakai(16)(17)

Marino(07) Marino, Schiappa, Weiss(09), Hatsuda, Dorigoni(15)



非摂動的観点から見ると 
摂動展開は 

（それが漸近級数である限り） 
破綻してこそ意味がある



具体例１：CPN sigma model
[Fujimori, Kamata, TM, Nitta, Sakai(16)(17)]



CP1シグマ模型
・CP1模型 on R1 x S1

・Twisted boundary conditions

L =
1

g2
|@µ'|2

(1 + |'|2)2

'(y + L) = eimL'(y) (m=π/L  :  Z2 t.b.c.)

dimensional reduction

· 1d limit : QM of a particle on sphere
(due to twisted b.c.)potential with two minima

· fractional instanton

kink 
(tunneling)

complex bion solution 
complex φ-plane

→ BPS Fractional instantons

cf.) m=π/L

30

! !

FIG. 9: Fractional instanton configuration on S2 in the reduced quantum mechanics is depicted. It corre-

sponds to a single line from the north to the south pole which is rotated over the half of S2 homogeneously.

The figure depicts the rotation of the line around the half sphere. The red arrows denote paths depending

on x2 with a constant x1, while the blue arrows denote the x1 dependence of such paths.

!

π1 +1/2 −1/2 +1/2 −1/2

π2 +1/2 −1/2 −1/2 +1/2

(a) (b) (c) (d)

FIG. 10: Fractional (anti-)instanton configurations in the reduced quantum mechanics is depicted on the

S2 target space of the CP 1 model. The first and second homotopy groups for instantons in the sine-Gordon

model and CP 1 model are shown. Configurations with positive values of the second homotopy class π2 are

BPS while those with negative values are anti-BPS both in the CP 1 model and reduced sine-Gordon model.

Thus, (a) and (d) are BPS while (b) and (c) are anti-BPS.

Lee, Yi(97)
Lee, Lu(97)
Kraan, van Baal(97)
Eto, et.al. (04)
Bruckmann (05)

+ LF

asymptotic-free theory



Small-L での有効理論

・2つのlocal minimaを持つポテンシャル

・Kink解

dimensional reduction

· 1d limit : QM of a particle on sphere
(due to twisted b.c.)potential with two minima

· fractional instanton

kink 
(tunneling)

complex bion solution 
complex φ-plane2つの極小点間のトンネル効果を表す

北極と南極に対応

9

in the CPN−1 quantum mechanics. The fractional instanton in Eq.(II.9) and the bion configuration

in Eq. (II.12) take the form of Eq. (II.18). Thus we find that both the fractional instantons and the

bion configurations are correctly described in the CPN−1 quantum mechanics. We can show that all

other multi-fractional instanton configurations can be correctly described by the CPN−1 quantum

mechanics, provided it does not contain multi-fractional-instantons with |Q| ≥ 1 anywhere locally.

The instanton configuration (II.10) with Q = 1 is not reducible to the CPN−1 quantum me-

chanics, since it does not satisfy (II.18). The action and topological charge densities of the N

fractional instanton solution in Eq.(II.10) do exhibit a strong x2 dependence approaching the or-

dinary single instanton solution when the constituent fractional instantons are compressed in a

point. This situation inevitably occurs whenever configurations with |Q| ≥ 1 are contained. On

the other hand, we find that the configurations compatible with the CPN−1 quantum mechanics

have action density and topological charge density which are independent of the coordinate x2 of

the compact direction. Therefore, configurations with |Q| < 1 in the two-dimensional field theory

are correctly captured by the CPN−1 quantum mechanics, provided the multi-fractional-instanton

configurations with more than unit topological charge is not contained anywhere locally [44].

Once it was conjectured that the CPN−1 model reduces to the sine-Gordon quantum mechanics

in the limit of L → 0 (the compactification limit) [11, 12]. However, it has been observed that the

relative phase moduli of fractional instanton and anti-instanton is not correctly described by the

sine-Gordon quantum mechanics [22, 28, 36]. We discuss the differences between the CP 1 and the

sine-Gordon quantum mechanics in Sec. V.

C. CP 1 quantum mechanics with fermion and supersymmetry

To examine bion configurations, it is convenient to introduce a fermionic degree of freedom.

Only in this subsection, we use Lorentzian signature instead of Euclidean signature in order to

use also Schrödinger equation later. To denote 1d quantities simply, we rewrite without subscript:

−ix1 as the Lorentzian time t, ϕk=1
(0) → ϕ, g1d → g, G(0)

11̄
→ G etc. The Lagrangian of the CP 1

Lorentzian quantum mechanics with a fermion takes the form

L =
1

g2
G
[
∂tϕ∂tϕ̄−m2ϕϕ̄+ iψ̄Dtψ + ϵm(1 + ϕ∂ϕ logG)ψ̄ψ

]
, (II.20)

where G is the Fubini-Study metric and Dt is the pullback of the covariant derivative

G =
1

(1 + ϕϕ̄)2
, Dtψ =

[
∂t + ∂tϕ∂ϕ logG

]
ψ. (II.21)

・CP1量子力学（　　 ：超対称                       ：可解）

SI =
m

g2

・フェルミオン数射影よる基底状態実効理論
[H,  ̄] = 0  ̄| i = 0

V =

m2

4

sin ✓ � ✏mg2 cos ✓

✏ = 1 ✏ = n 2 N

10

The parameter ϵ controls the strength of the interaction between the bosonic and fermionic degrees

of freedom. If we set ϵ = 1, this model becomes a supersymmetric system which can be obtained

from the 2d N = (2, 0) CP 1 sigma model by an analogous dimensional reduction as the one

discussed in the previous subsection.

Since the fermion number ψ̄ψ commutes with the Hamiltonian, we can eliminate ψ by using

the conserved fermion number and the associated induced potential. By projecting quantum states

onto the subspace of the Hilbert space with a fixed fermion number, we obtain the following purely

bosonic Lagrangian (see Appendix A for details)

L =
1

g2
∂tϕ∂tϕ̄

(1 + ϕϕ̄)2
− V (ϕϕ̄), V (ϕϕ̄) ≡ 1

g2
m2ϕϕ̄

(1 + ϕϕ̄)2
− ϵm

1− ϕϕ̄

1 + ϕϕ̄
, (II.22)

where we have chosen the fermion number so that the supersymmetric ground state for ϵ = 1

is contained in the subspace of the Hilbert space. The potential V as a function of the latitude

θ ≡ 2arctan|ϕ| is shown in Fig. 3.

! "
#
!

Fig. 3: The potential V with the contribution of the fermion. The horizontal axis denotes the latitude

θ ≡ 2arctan|ϕ| on CP 1 ∼= S2.

For ϵ = 1, the ground state wave function Ψ0, which preserves the supersymmetry, is given as

the zero energy solution of the Schrödinger equation

HΨ0 = 0, (II.23)

with the Hamiltonian H of the bosonic theory:

H = −g2(1 + ϕϕ̄)2
∂

∂ϕ

∂

∂ϕ̄
+ V (ϕϕ̄). (II.24)

We find the exact solution of the ground state wave function

Ψ0 = exp

(
m

2g2
1− ϕϕ̄

1 + ϕϕ̄

)
. (II.25)

✓ = 2arctan |'|

✏g2m

�✏g2m
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・基底状態エネルギー

E = E(1)�✏ + E(2)�✏2 + O(�✏3)

摂動寄与と非摂動寄与が含まれるはず

厳密な基底エネルギー in CP1
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・固定点寄与

E(2)
= g2 �m

coth

m
g2

sinh

2 m
g2

2

4
Ei

⇣
2m
g2

⌘
+ Ei

⇣
� 2m

g2

⌘

2

� � � log

2m

g2

3

5

E(2)
0 ⇡ g2 � 2m

1X

n=1

(n� 1)!

✓
g2

2m

◆n

E(2)
0 ⇡ �2m

1X

p=1

e
� 2mp

g2

"
(p+ 1)

2
1X

n=1

(n� 1)!

✓
g2

2m

◆n

+ (p� 1)

2
1X

n=1

(n� 1)!

✓
� g2

2m

◆n

�2p2
✓
� + log

2m

g2

◆#

ボレル和を実行 arg[g^2] = ±0

np

厳密な基底エネルギー in CP1

ボレル和を実行 arg[g^2] = ±0



2

Lagrangian

g2L = G
[
|∂tϕ|2 − |mϕ|2 + iψ̄Dtψ

]
− ϵ

∂2µ

∂ϕ∂ϕ̄
ψψ̄, (1)

where ϕ is the inhomogeneous coordinate, G =
∂ϕ∂ϕ̄ log(1 + |ϕ|2) is the Fubini-Study metric, Dt = ∂t +
∂tϕ∂ϕ logG is the pull back of the covariant derivative
and µ = m|ϕ|2/(1 + |ϕ|2) is the moment map associated
with the U(1) symmetry ϕ → eiθϕ. The parameter ϵ is
the boson-fermion coupling and the Lagrangian becomes
supersymmetric at ϵ = 1. Since the fermion number
F = Gψψ̄ commutes with the Hamiltonian, the Hilbert
space can be decomposed into two subspaces with F = 1
and F = 0. By projecting quantum states onto the sub-
space which contains the ground state (F = 1), we obtain
the bosonic Lagrangian L = |∂tϕ|2/(g2(1 + |ϕ|2)2) − V
with the potential

V =
1

g2
m2|ϕ|2

(1 + |ϕ|2)2 − ϵm
1− |ϕ|2

1 + |ϕ|2 . (2)

We note that θ(≡ −2 arctan |ϕ|) = 0,π are global and
metastable vacua respectively.
For ϵ = 1, the ground state wave function Ψ0 preserv-

ing the SUSY is given as a zero energy solution of the
Schrödinger equation

Hϵ=1Ψ0 =

[
−g2(1 + |ϕ|2)2 ∂

∂ϕ

∂

∂ϕ̄
+ Vϵ=1

]
Ψ0 = 0. (3)

It is exactly solved as Ψ0 = ⟨ϕ|0⟩ = exp(−µ/g2). For ϵ ≈
1, the leading order correction to the ground state wave
function can be obtained by expanding the Schrödinger
equation with respect to small δϵ ≡ ϵ − 1 as ⟨ϕ|δΨ⟩.
Correspondingly, the ground state energy E can also be
expanded

E = δϵE(1) + δϵ2 E(2) + · · · . (4)

These expansion coefficients can be determined by the
standard Rayleigh-Schrödinger perturbation theory as
E(1) = ⟨0|δH|0⟩/⟨0|0⟩, E(2) = −⟨δΨ|Hϵ=1|δΨ⟩/⟨0|0⟩, · · ·
with δH = H − Hϵ=1. We find that these coefficients
E(i) are real without imaginary ambiguities and can be
expanded in absolutely convergent power series with re-
spect to the nonperturbative exponential exp(−2m/g2)

E(i) =
∞∑

p=0

E(i)
p exp(−2pm/g2), (5)

where the zero-th term E(i)
0 corresponds to the pertur-

bative contributions on the trivial vacuum (perturbative
vacuum). The coefficients of E(1) [21] are

E(1)
0 = −m+ g2, E(1)

p = −2m, (p ≥ 1). (6)

If the coefficients of E(2) are expanded in powers of g2,
they give factorially divergent asymptotic series, which

can be Borel-resummed. Hence we rewrite the coefficient
in the form of the Borel transform (See Appendix. A for
the details of calculations.) as

E(2)
0 = g2 + 2m

∫ ∞

0
dt

e−t

t− 2m
g2±i0

, (7)

E(2)
p = 2m

∫ ∞

0
dt e−t

{
(p+ 1)2

t− 2m
g2±i0

+
(p− 1)2

t+ 2m
g2

}

+ 4mp2
(
γ + log

2m

g2
± πi

2

)
, (p ≥ 1). (8)

Note that the imaginary ambiguities associated to the

Borel resummation is manifest in the first term of E(2)
p

with g2±i0, which is compensated by the imaginary part

±iπ/2 in the last term of E(2)
p+1, reproducing the original

real E(2) precisely.
We can now recognize the full resurgence structure to

all orders of nonperturbative exponential: imaginary am-
biguity of the non-Borel summable divergent perturba-
tion series on the p-bion background in the first term of

E(2)
p is cancelled by the imaginary ambiguity of the clas-

sical contribution of (p+1)-bion contribution in the last

term of E(2)
p+1. We note the absence of powers of g2 in

the imaginary ambiguity, which will allow us to recover
non-Borel summable perturbation series on the p-bion
background completely from the (p+1)-bion contribution
through the dispersion relation, without computing per-
turbative corrections around the multi-bion background
explicitly. Moreover, if we observe that E(2)/m is an
even function of m/g2, we can also understand the pres-
ence of Borel-summable part (second term of the first
line in Eq.(8)). Thus all the terms can now be repro-
duced through resurgence relation and the sign change
of m/g2, if we can compute all the classical p-bion con-
tributions.

Multi-bion solutions : Nonperturbative contribu-
tions to the ground state energy come from the saddle
points of the path integral Z =

∫
DϕDϕ̃ e−SE ∼ e−βE

(for large β), where we have complexified the degrees of
freedom by regarding ϕ ≡ ϕC

R + iϕC
I and ϕ̃ ≡ ϕC

R − iϕC
I

as independent holomorphic variables, and imposed the
periodic boundary condition ϕ(τ + β) = ϕ(τ) and for

ϕ̃. The Euclidean action SE =
∫ β
0 dτ [∂τϕ∂τ ϕ̃/(g2(1 +

ϕϕ̃)2) + V (ϕϕ̃)] has two conserved Noether charges as-
sociated with the complexification of the Euclidean time
translation τ → τ + a and the phase rotation (ϕ, ϕ̃) →
(eibϕ, e−ibϕ̃) (a, b ∈ C). Using the corresponding con-
servation laws, we can obtain the following solution of
the equation of motion with nontrivial contribution in a
β → ∞ limit,

ϕ = eiφc
f(τ − τc)

sin2 α
, ϕ̃ = e−iφc

f(τ − τc)

sin2 α
, (9)

where (τc,φc) are complex moduli parameters associated
with the symmetry and f(τ) is the elliptic function

f(τ) = cs(Ωτ, k) ≡ cn(Ωτ, k)/sn(Ωτ, k), (10)
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Then, we can define the perturbative sum for the non-alternating series as the analytic con-

tinuation of B0(g2) in the g2 complex plane from negative coupling, g2 < 0, to the positive

real axis, g2 > 0. This can be done in one of the two ways as shown in Fig. 2. Approaching

the positive real axis clock-wise (from above) and counter-clock-wise (from below).

B0(|g2| ± i�) = ReB0(|g2|)± i ImB0(|g2|) where ImB0(|g2|) ⇤ e�2SI ⇤ e�2A/g2 (6.4)

is the ambiguous part, and is a manifestation of non-Borel-summability [compare with (1.22)].

A definition of the Borel sum equivalent to what we described above through analytic

continuation in the complex g2-plane is the directional (sectorial) Borel sum. Define

S�P (g2) ⇥ B�(g
2) =

1

g2

� ⌅·ei�

0
BP (t) e�t/g2dt, (6.5)

C+

C�

t

Figure 9. Lateral, or right and left, Borel sums. Dark circles are singularities (poles or branch
points). Whenever a singularity exists between the right and left Borel sums, the theory is non-Borel
summable. The singular direction in the t-plane corresponds to a Stokes line in the complex g2-plane,
see Fig.2. The di�erence of the sectorial sums in passing from ⇥ = 0� to ⇥ = 0+ is the Stokes “jump”
across a Stokes ray.

A special case of this is the lateral Borel sum. The function B�±(g2) is associated with

contours just above and just below the ray at angle ⇥, and is called right (left) Borel resum-

mation. If there are no singular points in the ⇥ direction, then the left and right Borel sums

are equal, and the theory is sectorial Borel summable in the ⇥-direction. A theory for which

there are no singularities on ⇥ = 0 is called Borel summable in physics. In many cases, there

is a ray of singular points of the Borel transform BP (t), as shown in Figure 9. Then, the

theory is non-Borel summable, but left and right Borel summable. The ambiguity described

above, associated with whether we approach the real positive axis from above or below in

the complex g2-plane, in the latter language, maps to the choice of the integration contour

in the Laplace-transform. The integral is, of course, dependent on the choice of the contour,

– 51 –

厳密な基底エネルギー in CP1

・摂動寄与

・固定点寄与

ボレル平面上の
正実軸上の特異点



2

Lagrangian

g2L = G
[
|∂tϕ|2 − |mϕ|2 + iψ̄Dtψ

]
− ϵ

∂2µ

∂ϕ∂ϕ̄
ψψ̄, (1)

where ϕ is the inhomogeneous coordinate, G =
∂ϕ∂ϕ̄ log(1 + |ϕ|2) is the Fubini-Study metric, Dt = ∂t +
∂tϕ∂ϕ logG is the pull back of the covariant derivative
and µ = m|ϕ|2/(1 + |ϕ|2) is the moment map associated
with the U(1) symmetry ϕ → eiθϕ. The parameter ϵ is
the boson-fermion coupling and the Lagrangian becomes
supersymmetric at ϵ = 1. Since the fermion number
F = Gψψ̄ commutes with the Hamiltonian, the Hilbert
space can be decomposed into two subspaces with F = 1
and F = 0. By projecting quantum states onto the sub-
space which contains the ground state (F = 1), we obtain
the bosonic Lagrangian L = |∂tϕ|2/(g2(1 + |ϕ|2)2) − V
with the potential

V =
1

g2
m2|ϕ|2

(1 + |ϕ|2)2 − ϵm
1− |ϕ|2

1 + |ϕ|2 . (2)

We note that θ(≡ −2 arctan |ϕ|) = 0,π are global and
metastable vacua respectively.
For ϵ = 1, the ground state wave function Ψ0 preserv-

ing the SUSY is given as a zero energy solution of the
Schrödinger equation

Hϵ=1Ψ0 =

[
−g2(1 + |ϕ|2)2 ∂

∂ϕ

∂

∂ϕ̄
+ Vϵ=1

]
Ψ0 = 0. (3)

It is exactly solved as Ψ0 = ⟨ϕ|0⟩ = exp(−µ/g2). For ϵ ≈
1, the leading order correction to the ground state wave
function can be obtained by expanding the Schrödinger
equation with respect to small δϵ ≡ ϵ − 1 as ⟨ϕ|δΨ⟩.
Correspondingly, the ground state energy E can also be
expanded

E = δϵE(1) + δϵ2 E(2) + · · · . (4)

These expansion coefficients can be determined by the
standard Rayleigh-Schrödinger perturbation theory as
E(1) = ⟨0|δH|0⟩/⟨0|0⟩, E(2) = −⟨δΨ|Hϵ=1|δΨ⟩/⟨0|0⟩, · · ·
with δH = H − Hϵ=1. We find that these coefficients
E(i) are real without imaginary ambiguities and can be
expanded in absolutely convergent power series with re-
spect to the nonperturbative exponential exp(−2m/g2)

E(i) =
∞∑

p=0

E(i)
p exp(−2pm/g2), (5)

where the zero-th term E(i)
0 corresponds to the pertur-

bative contributions on the trivial vacuum (perturbative
vacuum). The coefficients of E(1) [21] are

E(1)
0 = −m+ g2, E(1)

p = −2m, (p ≥ 1). (6)

If the coefficients of E(2) are expanded in powers of g2,
they give factorially divergent asymptotic series, which

can be Borel-resummed. Hence we rewrite the coefficient
in the form of the Borel transform (See Appendix. A for
the details of calculations.) as

E(2)
0 = g2 + 2m

∫ ∞

0
dt

e−t

t− 2m
g2±i0

, (7)

E(2)
p = 2m

∫ ∞

0
dt e−t

{
(p+ 1)2

t− 2m
g2±i0

+
(p− 1)2

t+ 2m
g2

}

+ 4mp2
(
γ + log

2m

g2
± πi

2

)
, (p ≥ 1). (8)

Note that the imaginary ambiguities associated to the

Borel resummation is manifest in the first term of E(2)
p

with g2±i0, which is compensated by the imaginary part

±iπ/2 in the last term of E(2)
p+1, reproducing the original

real E(2) precisely.
We can now recognize the full resurgence structure to

all orders of nonperturbative exponential: imaginary am-
biguity of the non-Borel summable divergent perturba-
tion series on the p-bion background in the first term of

E(2)
p is cancelled by the imaginary ambiguity of the clas-

sical contribution of (p+1)-bion contribution in the last

term of E(2)
p+1. We note the absence of powers of g2 in

the imaginary ambiguity, which will allow us to recover
non-Borel summable perturbation series on the p-bion
background completely from the (p+1)-bion contribution
through the dispersion relation, without computing per-
turbative corrections around the multi-bion background
explicitly. Moreover, if we observe that E(2)/m is an
even function of m/g2, we can also understand the pres-
ence of Borel-summable part (second term of the first
line in Eq.(8)). Thus all the terms can now be repro-
duced through resurgence relation and the sign change
of m/g2, if we can compute all the classical p-bion con-
tributions.

Multi-bion solutions : Nonperturbative contribu-
tions to the ground state energy come from the saddle
points of the path integral Z =

∫
DϕDϕ̃ e−SE ∼ e−βE

(for large β), where we have complexified the degrees of
freedom by regarding ϕ ≡ ϕC

R + iϕC
I and ϕ̃ ≡ ϕC

R − iϕC
I

as independent holomorphic variables, and imposed the
periodic boundary condition ϕ(τ + β) = ϕ(τ) and for

ϕ̃. The Euclidean action SE =
∫ β
0 dτ [∂τϕ∂τ ϕ̃/(g2(1 +

ϕϕ̃)2) + V (ϕϕ̃)] has two conserved Noether charges as-
sociated with the complexification of the Euclidean time
translation τ → τ + a and the phase rotation (ϕ, ϕ̃) →
(eibϕ, e−ibϕ̃) (a, b ∈ C). Using the corresponding con-
servation laws, we can obtain the following solution of
the equation of motion with nontrivial contribution in a
β → ∞ limit,

ϕ = eiφc
f(τ − τc)

sin2 α
, ϕ̃ = e−iφc

f(τ − τc)

sin2 α
, (9)

where (τc,φc) are complex moduli parameters associated
with the symmetry and f(τ) is the elliptic function

f(τ) = cs(Ωτ, k) ≡ cn(Ωτ, k)/sn(Ωτ, k), (10)
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Then, we can define the perturbative sum for the non-alternating series as the analytic con-

tinuation of B0(g2) in the g2 complex plane from negative coupling, g2 < 0, to the positive

real axis, g2 > 0. This can be done in one of the two ways as shown in Fig. 2. Approaching

the positive real axis clock-wise (from above) and counter-clock-wise (from below).

B0(|g2| ± i�) = ReB0(|g2|)± i ImB0(|g2|) where ImB0(|g2|) ⇤ e�2SI ⇤ e�2A/g2 (6.4)

is the ambiguous part, and is a manifestation of non-Borel-summability [compare with (1.22)].

A definition of the Borel sum equivalent to what we described above through analytic

continuation in the complex g2-plane is the directional (sectorial) Borel sum. Define

S�P (g2) ⇥ B�(g
2) =

1

g2

� ⌅·ei�

0
BP (t) e�t/g2dt, (6.5)

C+

C�

t

Figure 9. Lateral, or right and left, Borel sums. Dark circles are singularities (poles or branch
points). Whenever a singularity exists between the right and left Borel sums, the theory is non-Borel
summable. The singular direction in the t-plane corresponds to a Stokes line in the complex g2-plane,
see Fig.2. The di�erence of the sectorial sums in passing from ⇥ = 0� to ⇥ = 0+ is the Stokes “jump”
across a Stokes ray.

A special case of this is the lateral Borel sum. The function B�±(g2) is associated with

contours just above and just below the ray at angle ⇥, and is called right (left) Borel resum-

mation. If there are no singular points in the ⇥ direction, then the left and right Borel sums

are equal, and the theory is sectorial Borel summable in the ⇥-direction. A theory for which

there are no singularities on ⇥ = 0 is called Borel summable in physics. In many cases, there

is a ray of singular points of the Borel transform BP (t), as shown in Figure 9. Then, the

theory is non-Borel summable, but left and right Borel summable. The ambiguity described

above, associated with whether we approach the real positive axis from above or below in

the complex g2-plane, in the latter language, maps to the choice of the integration contour

in the Laplace-transform. The integral is, of course, dependent on the choice of the contour,
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2

Lagrangian

g2L = G
[
|∂tϕ|2 − |mϕ|2 + iψ̄Dtψ

]
− ϵ

∂2µ

∂ϕ∂ϕ̄
ψψ̄, (1)

where ϕ is the inhomogeneous coordinate, G =
∂ϕ∂ϕ̄ log(1 + |ϕ|2) is the Fubini-Study metric, Dt = ∂t +
∂tϕ∂ϕ logG is the pull back of the covariant derivative
and µ = m|ϕ|2/(1 + |ϕ|2) is the moment map associated
with the U(1) symmetry ϕ → eiθϕ. The parameter ϵ is
the boson-fermion coupling and the Lagrangian becomes
supersymmetric at ϵ = 1. Since the fermion number
F = Gψψ̄ commutes with the Hamiltonian, the Hilbert
space can be decomposed into two subspaces with F = 1
and F = 0. By projecting quantum states onto the sub-
space which contains the ground state (F = 1), we obtain
the bosonic Lagrangian L = |∂tϕ|2/(g2(1 + |ϕ|2)2) − V
with the potential

V =
1

g2
m2|ϕ|2

(1 + |ϕ|2)2 − ϵm
1− |ϕ|2

1 + |ϕ|2 . (2)

We note that θ(≡ −2 arctan |ϕ|) = 0,π are global and
metastable vacua respectively.
For ϵ = 1, the ground state wave function Ψ0 preserv-

ing the SUSY is given as a zero energy solution of the
Schrödinger equation

Hϵ=1Ψ0 =

[
−g2(1 + |ϕ|2)2 ∂

∂ϕ

∂

∂ϕ̄
+ Vϵ=1

]
Ψ0 = 0. (3)

It is exactly solved as Ψ0 = ⟨ϕ|0⟩ = exp(−µ/g2). For ϵ ≈
1, the leading order correction to the ground state wave
function can be obtained by expanding the Schrödinger
equation with respect to small δϵ ≡ ϵ − 1 as ⟨ϕ|δΨ⟩.
Correspondingly, the ground state energy E can also be
expanded

E = δϵE(1) + δϵ2 E(2) + · · · . (4)

These expansion coefficients can be determined by the
standard Rayleigh-Schrödinger perturbation theory as
E(1) = ⟨0|δH|0⟩/⟨0|0⟩, E(2) = −⟨δΨ|Hϵ=1|δΨ⟩/⟨0|0⟩, · · ·
with δH = H − Hϵ=1. We find that these coefficients
E(i) are real without imaginary ambiguities and can be
expanded in absolutely convergent power series with re-
spect to the nonperturbative exponential exp(−2m/g2)

E(i) =
∞∑

p=0

E(i)
p exp(−2pm/g2), (5)

where the zero-th term E(i)
0 corresponds to the pertur-

bative contributions on the trivial vacuum (perturbative
vacuum). The coefficients of E(1) [21] are

E(1)
0 = −m+ g2, E(1)

p = −2m, (p ≥ 1). (6)

If the coefficients of E(2) are expanded in powers of g2,
they give factorially divergent asymptotic series, which

can be Borel-resummed. Hence we rewrite the coefficient
in the form of the Borel transform (See Appendix. A for
the details of calculations.) as

E(2)
0 = g2 + 2m

∫ ∞

0
dt

e−t

t− 2m
g2±i0

, (7)

E(2)
p = 2m

∫ ∞

0
dt e−t

{
(p+ 1)2

t− 2m
g2±i0

+
(p− 1)2

t+ 2m
g2

}

+ 4mp2
(
γ + log

2m

g2
± πi

2

)
, (p ≥ 1). (8)

Note that the imaginary ambiguities associated to the

Borel resummation is manifest in the first term of E(2)
p

with g2±i0, which is compensated by the imaginary part

±iπ/2 in the last term of E(2)
p+1, reproducing the original

real E(2) precisely.
We can now recognize the full resurgence structure to

all orders of nonperturbative exponential: imaginary am-
biguity of the non-Borel summable divergent perturba-
tion series on the p-bion background in the first term of

E(2)
p is cancelled by the imaginary ambiguity of the clas-

sical contribution of (p+1)-bion contribution in the last

term of E(2)
p+1. We note the absence of powers of g2 in

the imaginary ambiguity, which will allow us to recover
non-Borel summable perturbation series on the p-bion
background completely from the (p+1)-bion contribution
through the dispersion relation, without computing per-
turbative corrections around the multi-bion background
explicitly. Moreover, if we observe that E(2)/m is an
even function of m/g2, we can also understand the pres-
ence of Borel-summable part (second term of the first
line in Eq.(8)). Thus all the terms can now be repro-
duced through resurgence relation and the sign change
of m/g2, if we can compute all the classical p-bion con-
tributions.

Multi-bion solutions : Nonperturbative contribu-
tions to the ground state energy come from the saddle
points of the path integral Z =

∫
DϕDϕ̃ e−SE ∼ e−βE

(for large β), where we have complexified the degrees of
freedom by regarding ϕ ≡ ϕC

R + iϕC
I and ϕ̃ ≡ ϕC

R − iϕC
I

as independent holomorphic variables, and imposed the
periodic boundary condition ϕ(τ + β) = ϕ(τ) and for

ϕ̃. The Euclidean action SE =
∫ β
0 dτ [∂τϕ∂τ ϕ̃/(g2(1 +

ϕϕ̃)2) + V (ϕϕ̃)] has two conserved Noether charges as-
sociated with the complexification of the Euclidean time
translation τ → τ + a and the phase rotation (ϕ, ϕ̃) →
(eibϕ, e−ibϕ̃) (a, b ∈ C). Using the corresponding con-
servation laws, we can obtain the following solution of
the equation of motion with nontrivial contribution in a
β → ∞ limit,

ϕ = eiφc
f(τ − τc)

sin2 α
, ϕ̃ = e−iφc

f(τ − τc)

sin2 α
, (9)

where (τc,φc) are complex moduli parameters associated
with the symmetry and f(τ) is the elliptic function

f(τ) = cs(Ωτ, k) ≡ cn(Ωτ, k)/sn(Ωτ, k), (10)
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2

Lagrangian

g2L = G
[
|∂tϕ|2 − |mϕ|2 + iψ̄Dtψ

]
− ϵ

∂2µ

∂ϕ∂ϕ̄
ψψ̄, (1)

where ϕ is the inhomogeneous coordinate, G =
∂ϕ∂ϕ̄ log(1 + |ϕ|2) is the Fubini-Study metric, Dt = ∂t +
∂tϕ∂ϕ logG is the pull back of the covariant derivative
and µ = m|ϕ|2/(1 + |ϕ|2) is the moment map associated
with the U(1) symmetry ϕ → eiθϕ. The parameter ϵ is
the boson-fermion coupling and the Lagrangian becomes
supersymmetric at ϵ = 1. Since the fermion number
F = Gψψ̄ commutes with the Hamiltonian, the Hilbert
space can be decomposed into two subspaces with F = 1
and F = 0. By projecting quantum states onto the sub-
space which contains the ground state (F = 1), we obtain
the bosonic Lagrangian L = |∂tϕ|2/(g2(1 + |ϕ|2)2) − V
with the potential

V =
1

g2
m2|ϕ|2

(1 + |ϕ|2)2 − ϵm
1− |ϕ|2

1 + |ϕ|2 . (2)

We note that θ(≡ −2 arctan |ϕ|) = 0,π are global and
metastable vacua respectively.
For ϵ = 1, the ground state wave function Ψ0 preserv-

ing the SUSY is given as a zero energy solution of the
Schrödinger equation

Hϵ=1Ψ0 =

[
−g2(1 + |ϕ|2)2 ∂

∂ϕ

∂

∂ϕ̄
+ Vϵ=1

]
Ψ0 = 0. (3)

It is exactly solved as Ψ0 = ⟨ϕ|0⟩ = exp(−µ/g2). For ϵ ≈
1, the leading order correction to the ground state wave
function can be obtained by expanding the Schrödinger
equation with respect to small δϵ ≡ ϵ − 1 as ⟨ϕ|δΨ⟩.
Correspondingly, the ground state energy E can also be
expanded

E = δϵE(1) + δϵ2 E(2) + · · · . (4)

These expansion coefficients can be determined by the
standard Rayleigh-Schrödinger perturbation theory as
E(1) = ⟨0|δH|0⟩/⟨0|0⟩, E(2) = −⟨δΨ|Hϵ=1|δΨ⟩/⟨0|0⟩, · · ·
with δH = H − Hϵ=1. We find that these coefficients
E(i) are real without imaginary ambiguities and can be
expanded in absolutely convergent power series with re-
spect to the nonperturbative exponential exp(−2m/g2)

E(i) =
∞∑

p=0

E(i)
p exp(−2pm/g2), (5)

where the zero-th term E(i)
0 corresponds to the pertur-

bative contributions on the trivial vacuum (perturbative
vacuum). The coefficients of E(1) [21] are

E(1)
0 = −m+ g2, E(1)

p = −2m, (p ≥ 1). (6)

If the coefficients of E(2) are expanded in powers of g2,
they give factorially divergent asymptotic series, which

can be Borel-resummed. Hence we rewrite the coefficient
in the form of the Borel transform (See Appendix. A for
the details of calculations.) as

E(2)
0 = g2 + 2m

∫ ∞

0
dt

e−t

t− 2m
g2±i0

, (7)

E(2)
p = 2m

∫ ∞

0
dt e−t

{
(p+ 1)2

t− 2m
g2±i0

+
(p− 1)2

t+ 2m
g2

}

+ 4mp2
(
γ + log

2m

g2
± πi

2

)
, (p ≥ 1). (8)

Note that the imaginary ambiguities associated to the

Borel resummation is manifest in the first term of E(2)
p

with g2±i0, which is compensated by the imaginary part

±iπ/2 in the last term of E(2)
p+1, reproducing the original

real E(2) precisely.
We can now recognize the full resurgence structure to

all orders of nonperturbative exponential: imaginary am-
biguity of the non-Borel summable divergent perturba-
tion series on the p-bion background in the first term of

E(2)
p is cancelled by the imaginary ambiguity of the clas-

sical contribution of (p+1)-bion contribution in the last

term of E(2)
p+1. We note the absence of powers of g2 in

the imaginary ambiguity, which will allow us to recover
non-Borel summable perturbation series on the p-bion
background completely from the (p+1)-bion contribution
through the dispersion relation, without computing per-
turbative corrections around the multi-bion background
explicitly. Moreover, if we observe that E(2)/m is an
even function of m/g2, we can also understand the pres-
ence of Borel-summable part (second term of the first
line in Eq.(8)). Thus all the terms can now be repro-
duced through resurgence relation and the sign change
of m/g2, if we can compute all the classical p-bion con-
tributions.

Multi-bion solutions : Nonperturbative contribu-
tions to the ground state energy come from the saddle
points of the path integral Z =

∫
DϕDϕ̃ e−SE ∼ e−βE

(for large β), where we have complexified the degrees of
freedom by regarding ϕ ≡ ϕC

R + iϕC
I and ϕ̃ ≡ ϕC

R − iϕC
I

as independent holomorphic variables, and imposed the
periodic boundary condition ϕ(τ + β) = ϕ(τ) and for

ϕ̃. The Euclidean action SE =
∫ β
0 dτ [∂τϕ∂τ ϕ̃/(g2(1 +

ϕϕ̃)2) + V (ϕϕ̃)] has two conserved Noether charges as-
sociated with the complexification of the Euclidean time
translation τ → τ + a and the phase rotation (ϕ, ϕ̃) →
(eibϕ, e−ibϕ̃) (a, b ∈ C). Using the corresponding con-
servation laws, we can obtain the following solution of
the equation of motion with nontrivial contribution in a
β → ∞ limit,

ϕ = eiφc
f(τ − τc)

sin2 α
, ϕ̃ = e−iφc

f(τ − τc)

sin2 α
, (9)

where (τc,φc) are complex moduli parameters associated
with the symmetry and f(τ) is the elliptic function

f(τ) = cs(Ωτ, k) ≡ cn(Ωτ, k)/sn(Ωτ, k), (10)

E(2)
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2

Lagrangian

g2L = G
[
|∂tϕ|2 − |mϕ|2 + iψ̄Dtψ

]
− ϵ

∂2µ

∂ϕ∂ϕ̄
ψψ̄, (1)

where ϕ is the inhomogeneous coordinate, G =
∂ϕ∂ϕ̄ log(1 + |ϕ|2) is the Fubini-Study metric, Dt = ∂t +
∂tϕ∂ϕ logG is the pull back of the covariant derivative
and µ = m|ϕ|2/(1 + |ϕ|2) is the moment map associated
with the U(1) symmetry ϕ → eiθϕ. The parameter ϵ is
the boson-fermion coupling and the Lagrangian becomes
supersymmetric at ϵ = 1. Since the fermion number
F = Gψψ̄ commutes with the Hamiltonian, the Hilbert
space can be decomposed into two subspaces with F = 1
and F = 0. By projecting quantum states onto the sub-
space which contains the ground state (F = 1), we obtain
the bosonic Lagrangian L = |∂tϕ|2/(g2(1 + |ϕ|2)2) − V
with the potential

V =
1

g2
m2|ϕ|2

(1 + |ϕ|2)2 − ϵm
1− |ϕ|2

1 + |ϕ|2 . (2)

We note that θ(≡ −2 arctan |ϕ|) = 0,π are global and
metastable vacua respectively.
For ϵ = 1, the ground state wave function Ψ0 preserv-

ing the SUSY is given as a zero energy solution of the
Schrödinger equation

Hϵ=1Ψ0 =

[
−g2(1 + |ϕ|2)2 ∂

∂ϕ

∂

∂ϕ̄
+ Vϵ=1

]
Ψ0 = 0. (3)

It is exactly solved as Ψ0 = ⟨ϕ|0⟩ = exp(−µ/g2). For ϵ ≈
1, the leading order correction to the ground state wave
function can be obtained by expanding the Schrödinger
equation with respect to small δϵ ≡ ϵ − 1 as ⟨ϕ|δΨ⟩.
Correspondingly, the ground state energy E can also be
expanded

E = δϵE(1) + δϵ2 E(2) + · · · . (4)

These expansion coefficients can be determined by the
standard Rayleigh-Schrödinger perturbation theory as
E(1) = ⟨0|δH|0⟩/⟨0|0⟩, E(2) = −⟨δΨ|Hϵ=1|δΨ⟩/⟨0|0⟩, · · ·
with δH = H − Hϵ=1. We find that these coefficients
E(i) are real without imaginary ambiguities and can be
expanded in absolutely convergent power series with re-
spect to the nonperturbative exponential exp(−2m/g2)

E(i) =
∞∑

p=0

E(i)
p exp(−2pm/g2), (5)

where the zero-th term E(i)
0 corresponds to the pertur-

bative contributions on the trivial vacuum (perturbative
vacuum). The coefficients of E(1) [21] are

E(1)
0 = −m+ g2, E(1)

p = −2m, (p ≥ 1). (6)

If the coefficients of E(2) are expanded in powers of g2,
they give factorially divergent asymptotic series, which

can be Borel-resummed. Hence we rewrite the coefficient
in the form of the Borel transform (See Appendix. A for
the details of calculations.) as

E(2)
0 = g2 + 2m

∫ ∞

0
dt

e−t

t− 2m
g2±i0

, (7)

E(2)
p = 2m

∫ ∞

0
dt e−t

{
(p+ 1)2

t− 2m
g2±i0

+
(p− 1)2

t+ 2m
g2

}

+ 4mp2
(
γ + log

2m

g2
± πi

2

)
, (p ≥ 1). (8)

Note that the imaginary ambiguities associated to the

Borel resummation is manifest in the first term of E(2)
p

with g2±i0, which is compensated by the imaginary part

±iπ/2 in the last term of E(2)
p+1, reproducing the original

real E(2) precisely.
We can now recognize the full resurgence structure to

all orders of nonperturbative exponential: imaginary am-
biguity of the non-Borel summable divergent perturba-
tion series on the p-bion background in the first term of

E(2)
p is cancelled by the imaginary ambiguity of the clas-

sical contribution of (p+1)-bion contribution in the last

term of E(2)
p+1. We note the absence of powers of g2 in

the imaginary ambiguity, which will allow us to recover
non-Borel summable perturbation series on the p-bion
background completely from the (p+1)-bion contribution
through the dispersion relation, without computing per-
turbative corrections around the multi-bion background
explicitly. Moreover, if we observe that E(2)/m is an
even function of m/g2, we can also understand the pres-
ence of Borel-summable part (second term of the first
line in Eq.(8)). Thus all the terms can now be repro-
duced through resurgence relation and the sign change
of m/g2, if we can compute all the classical p-bion con-
tributions.

Multi-bion solutions : Nonperturbative contribu-
tions to the ground state energy come from the saddle
points of the path integral Z =

∫
DϕDϕ̃ e−SE ∼ e−βE

(for large β), where we have complexified the degrees of
freedom by regarding ϕ ≡ ϕC

R + iϕC
I and ϕ̃ ≡ ϕC

R − iϕC
I

as independent holomorphic variables, and imposed the
periodic boundary condition ϕ(τ + β) = ϕ(τ) and for

ϕ̃. The Euclidean action SE =
∫ β
0 dτ [∂τϕ∂τ ϕ̃/(g2(1 +

ϕϕ̃)2) + V (ϕϕ̃)] has two conserved Noether charges as-
sociated with the complexification of the Euclidean time
translation τ → τ + a and the phase rotation (ϕ, ϕ̃) →
(eibϕ, e−ibϕ̃) (a, b ∈ C). Using the corresponding con-
servation laws, we can obtain the following solution of
the equation of motion with nontrivial contribution in a
β → ∞ limit,

ϕ = eiφc
f(τ − τc)

sin2 α
, ϕ̃ = e−iφc

f(τ − τc)

sin2 α
, (9)

where (τc,φc) are complex moduli parameters associated
with the symmetry and f(τ) is the elliptic function

f(τ) = cs(Ωτ, k) ≡ cn(Ωτ, k)/sn(Ωτ, k), (10)
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θ is the phase of the complexified coupling g2 = |g2|eiθ.
The imaginary ambiguity of the bion contribution de-
pends on an infinitely small sign of this phase. It is no-
table that the contribution in (.13) vanishes at ϵ = 1,
which is consistent with the supersymmetry.
The results on the bion solutions are easily extended

to CPN−1 models. In complexified CPN−1 models with
fermionic degrees of freedom, we have N real bion and N
complex bion solutions. The real bions for this case are
given by

ϕi =

√
ω2
i

Nmiϵg2
eiφ0

sinhωi(τ − τ0)
, (.14)

with ωi = mi

√
1 +Nϵg2/mi. The complex bions are

given by

ϕi =

√
ω2
i

Nmiϵg2
eiφ0

coshωi(τ − τ0)
, ϕ̃i = −ϕ̄i . (.15)

For this case, the effective potential between the BPS
components in bion configuration is modified as

Veff ≈ 2mi

g2
− 4mi

g2
e−miτr cosφr + 2ϵ′miτr , (.16)

with ϵ′ = 1 + 1
2 (ϵ − 1)N . By performing the Lefschetz

thimble integral (quasi moduli integral) based on this
effective potential, we derive the contributions from N
real and complex bions to the ground state energy

Ebion = −
N−1∑

i=1

2mi

(
g2

2mi

)2(ϵ′−1)
sin ϵ′π

π
Γ (ϵ′)

2
e
− 2mi

g2

×
{

eπiϵ for θ = −0
e−πiϵ for θ = +0

.(.17)

Again, the imaginary ambiguity of the bion contribution
depends on a sign of the phase of complexified coupling
constant g2 = |g2|eiθ. The contribution vanishes at ϵ′ =
ϵ = 0, which agrees with the supersymmetry.

Contribution from Perturbative vacuum : We
here focus on the CP 1 model. To derive a perturba-
tive series of the ground state energy, we redefine the
wave function and the coordinate as ψ = e−x2

Ψ(x), |ϕ| =
ηx, η ≡ g√

m
. Then, the Hamiltonian becomes

H̃

m
= −1

4
(1 + η2x2)2

{
∂2x + (1− 4x2)

1

x
∂x

}
+ V (x),(.18)

where the potential is

V (x) = (1− x2)(1 + η2x2)2 +
x2

(1 + η2x2)2
− ϵ

1− η2x2

1 + η2x2
.(.19)

We expand the energy and the wave function with re-
spect to η as E

m =
∑∞

l=0 Alη2l,Ψ =
∑∞

l=0 Ψl(x)η2l. The

Schrödinger equation (H̃ − E)Ψ = 0 is expanded by

l

= 1+

= 0+

= 2+
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Fig. 2: The asymptotic behavior of the ratio

Al/
[

1
2l−1

Γ(l+2(1−ϵ))
Γ(1−ϵ)2

]
(l ≤ 100) for 0 ≤ ϵ ≤ 2. δ is a

regularization parameter (δ = 10−10).

Al and Ψl with Ψl = 0 for l < 0. Setting Ψ0 = 1,
we solve equations order by order, and find that Ψl are
polynomials of the form Ψl =

∑2l
k=0 Bl,kx2k. Then, the

Schrödinger equation reduces to the recursion relation
called Bender-Wu recursion relation,

0 =
4∑

i=0

(
4
i

)[
(k − i+ 1)2Bl−i,k−i+1

− (2k − 2i+ 1)Bl−i,k−i +Bl−i,k−i−1

]

+
l∑

i=1

Ai(Bl−i,k + 2Bl−i−1,k−1

+ Bl−i−2,k−2)−Bl,k−1 + ϵ(Bl,k −Bl−2,k−2),(.20)

where Bl,k = 0 if l < 0, k < 0, k > 2l.
We now obtain Al in Epert = m

∑∞
l=0 Alη2l. As shown

in Fig. 2 it has the asymptotic behavior

Al ∼ − 1

2l−1

Γ(l + 2(1− ϵ))

Γ(1− ϵ)2
. (.21)

Now, we introduce Borel transform and Borel resum-
mation. The Borel resummation of Epert gives an an-
alytic function which has Epert as an asymptotic se-
ries. Firstly, the Borel transform B[Epert](t) of the series
Epert(η2) =

∑∞
l=0 Elη2l is defined as

B[Epert](t) =
∞∑

l=0

Fl

l!
tl , (.22)

where t ∈ C is a Borel parameter. Note, in the present
case (and lots of other examples), the Borel transform
B[Epert] has singularities on the real and positive axis on
the Borel plane of t. Now, the (lateral) Borel resumma-
tion is defined as

S±Epert(η
2) =

1

η2

∫ e±iδ∞

0
B[Epert](t)e

−t/η2dt , (.23)

with δ is a infinitely small number. Since the Borel trans-
form has singularities on the real and positive axis, we

Bender-Wu法による高次摂動係数 
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· Holomorphic actionに解析接続

理論(変数)の複素化
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運動方程式の複素解：Complex bion解

 : “複素相対距離”
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(a) Σ(τ) for real bion (b) Σ(τ) for complex bion

Fig. 4: Kink profiles of for real and complex bions. The complex bion solution has singularities at which

Σ(τ) diverges. Note that Σ(τ) can also be complex in the complexified model.

As we will see below, this configuration has singularities at which the action density diverges. Since

ϕ̃ is no longer the complex conjugate of ϕ, this is a solution of the complexified model and hence

we call this configuration “complex bion solution”.

It is worth noting that the shifted solution can also be rewritten into the kink-antikink form

ϕ =
(
eω(τ−τ+)−iφ+ + e−ω(τ−τ−)−iφ−

)−1
, ϕ̃ =

(
eω(τ−τ+)+iφ+ + e−ω(τ−τ−)+iφ−

)−1
, (III.23)

with complexified position parameters τ±:

τ± = τ0 ±
1

2ω

(
log

4ω2

ω2 −m2
+ πi

)
, φ± = φ0 −

π

2
, (III.24)

where we have used the fact that the shift τ0 → τ0 +
1
ω
πi
2 can be rewritten as the combination of

the shifts ωτ+ ± iφ+ → ωτ+ ± iφ+ + πi
2 (mod 2πi) and ωτ− ± iφ− → ωτ− ± iφ− + πi

2 (mod 2πi).

Therefore, the complex bion solution can also be viewed as a kink-antikink solution with complex

relative distance

τr ≡ τ+ − τ− =
1

ω

(
log

4ω2

ω2 −m2
+ πi

)
. (III.25)

Fig. 4 shows the kink-like profiles of the function Σ(τ) in Eq.(II.19), which takes the following form

in the complexified theory

Σ = m
ϕϕ̃

1 + ϕϕ̃
. (III.26)

' =

r
!2

�

ei�0

cosh!(⌧ � ⌧0)
'̃ = �'⇤

複素解



• 整数(p,q)で分類される 

• pはbion数 

• qは解の形状を規定

Multi-bion 解
Multi-bion解

2

Lagrangian

g2L = G
[
|∂tϕ|2 − |mϕ|2 + iψ̄Dtψ

]
− ϵ

∂2µ

∂ϕ∂ϕ̄
ψψ̄, (1)

where ϕ is the inhomogeneous coordinate, G =
∂ϕ∂ϕ̄ log(1 + |ϕ|2) is the Fubini-Study metric, Dt = ∂t +
∂tϕ∂ϕ logG is the pull back of the covariant derivative
and µ = m|ϕ|2/(1 + |ϕ|2) is the moment map associated
with the U(1) symmetry ϕ → eiθϕ. The parameter ϵ is
the boson-fermion coupling and the Lagrangian becomes
supersymmetric at ϵ = 1. Since the fermion number
F = Gψψ̄ commutes with the Hamiltonian, the Hilbert
space can be decomposed into two subspaces with F = 1
and F = 0. By projecting quantum states onto the sub-
space which contains the ground state (F = 1), we obtain
the bosonic Lagrangian L = |∂tϕ|2/(g2(1 + |ϕ|2)2) − V
with the potential

V =
1

g2
m2|ϕ|2

(1 + |ϕ|2)2 − ϵm
1− |ϕ|2

1 + |ϕ|2 . (2)

We note that θ(≡ −2 arctan |ϕ|) = 0,π are global and
metastable vacua respectively.
For ϵ = 1, the ground state wave function Ψ0 preserv-

ing the SUSY is given as a zero energy solution of the
Schrödinger equation

Hϵ=1Ψ0 =

[
−g2(1 + |ϕ|2)2 ∂

∂ϕ

∂

∂ϕ̄
+ Vϵ=1

]
Ψ0 = 0. (3)

It is exactly solved as Ψ0 = ⟨ϕ|0⟩ = exp(−µ/g2). For ϵ ≈
1, the leading order correction to the ground state wave
function can be obtained by expanding the Schrödinger
equation with respect to small δϵ ≡ ϵ − 1 as ⟨ϕ|δΨ⟩.
Correspondingly, the ground state energy E can also be
expanded

E = δϵE(1) + δϵ2 E(2) + · · · . (4)

These expansion coefficients can be determined by the
standard Rayleigh-Schrödinger perturbation theory as
E(1) = ⟨0|δH|0⟩/⟨0|0⟩, E(2) = −⟨δΨ|Hϵ=1|δΨ⟩/⟨0|0⟩, · · ·
with δH = H − Hϵ=1. We find that these coefficients
E(i) are real without imaginary ambiguities and can be
expanded in absolutely convergent power series with re-
spect to the nonperturbative exponential exp(−2m/g2)

E(i) =
∞∑

p=0

E(i)
p exp(−2pm/g2), (5)

where the zero-th term E(i)
0 corresponds to the pertur-

bative contributions on the trivial vacuum (perturbative
vacuum). The coefficients of E(1) [21] are

E(1)
0 = −m+ g2, E(1)

p = −2m, (p ≥ 1). (6)

If the coefficients of E(2) are expanded in powers of g2,
they give factorially divergent asymptotic series, which

can be Borel-resummed. Hence we rewrite the coefficient
in the form of the Borel transform (See Appendix. A for
the details of calculations.) as

E(2)
0 = g2 + 2m

∫ ∞

0
dt

e−t

t− 2m
g2±i0

, (7)

E(2)
p = 2m

∫ ∞

0
dt e−t

{
(p+ 1)2

t− 2m
g2±i0

+
(p− 1)2

t+ 2m
g2

}

+ 4mp2
(
γ + log

2m

g2
± πi

2

)
, (p ≥ 1). (8)

Note that the imaginary ambiguities associated to the

Borel resummation is manifest in the first term of E(2)
p

with g2±i0, which is compensated by the imaginary part

±iπ/2 in the last term of E(2)
p+1, reproducing the original

real E(2) precisely.
We can now recognize the full resurgence structure to

all orders of nonperturbative exponential: imaginary am-
biguity of the non-Borel summable divergent perturba-
tion series on the p-bion background in the first term of

E(2)
p is cancelled by the imaginary ambiguity of the clas-

sical contribution of (p+1)-bion contribution in the last

term of E(2)
p+1. We note the absence of powers of g2 in

the imaginary ambiguity, which will allow us to recover
non-Borel summable perturbation series on the p-bion
background completely from the (p+1)-bion contribution
through the dispersion relation, without computing per-
turbative corrections around the multi-bion background
explicitly. Moreover, if we observe that E(2)/m is an
even function of m/g2, we can also understand the pres-
ence of Borel-summable part (second term of the first
line in Eq.(8)). Thus all the terms can now be repro-
duced through resurgence relation and the sign change
of m/g2, if we can compute all the classical p-bion con-
tributions.

Multi-bion solutions : Nonperturbative contribu-
tions to the ground state energy come from the saddle
points of the path integral Z =

∫
DϕDϕ̃ e−SE ∼ e−βE

(for large β), where we have complexified the degrees of
freedom by regarding ϕ ≡ ϕC

R + iϕC
I and ϕ̃ ≡ ϕC

R − iϕC
I

as independent holomorphic variables, and imposed the
periodic boundary condition ϕ(τ + β) = ϕ(τ) and for

ϕ̃. The Euclidean action SE =
∫ β
0 dτ [∂τϕ∂τ ϕ̃/(g2(1 +

ϕϕ̃)2) + V (ϕϕ̃)] has two conserved Noether charges as-
sociated with the complexification of the Euclidean time
translation τ → τ + a and the phase rotation (ϕ, ϕ̃) →
(eibϕ, e−ibϕ̃) (a, b ∈ C). Using the corresponding con-
servation laws, we can obtain the following solution of
the equation of motion with nontrivial contribution in a
β → ∞ limit,

ϕ = eiφc
f(τ − τc)

sin2 α
, ϕ̃ = e−iφc

f(τ − τc)

sin2 α
, (9)

where (τc,φc) are complex moduli parameters associated
with the symmetry and f(τ) is the elliptic function

f(τ) = cs(Ωτ, k) ≡ cn(Ωτ, k)/sn(Ωτ, k), (10)
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[Fujimori, Kamata, TM, Nitta, Sakai(16)(17)]

3

Fig. 1: Multi-bion solution: kink profile of Σ(τ) = (1 −
ϕϕ̃)/(1 + ϕϕ̃) for (p, q) = (3, 1), ϵ = 1, m = 1, g = 1/200,
β = 100 and τc = 0. Σ = ±1 (dashed lines) correspond to
north and south poles (global and local minima) of CP 1.

which satisfies the differential equation (∂τf)2 = Ω2(f2+
1)(f2 + 1 − k2). Solutions are characterized by two in-
tegers (p, q) for the period β = (2pK + 4iqK ′)/Ω, with
2K(k) and 4iK ′ (K ′ ≡ K(

√
1− k2)) as the period of the

doubly periodic function cs. The parameters (α,Ω, k)
are given in terms of the period β, and their asymptotic
forms for large β (See Appendix. B for the details of cal-
culations.) are given by

k ≈ 1− 8 e−
ωβ−2πiq

p , Ω ≈ ω
(
1 + 8ω2+m2

ω2−m2 e
−ωβ−2πiq

p

)
,

cosα ≈ m
ω

(
1− 8m2

ω2−m2 e
−ωβ−2πiq

p

)
, (11)

where ω = m
√

1 + 2ϵg2/m and (p, q) are arbitrary inte-
gers such that 0 ≤ q < p. The asymptotic value of the
action for the (p, q) solution is given by

S ≈ pSbion + 2πiϵl, Sbion =
2m

g2
+ 2ϵ log

ω +m

ω −m
, (12)

where we have ignored the vacuum value of the action.
The imaginary part 2πiϵl is related to the so-called hid-
den topological angle [34] and the integer l is zero or the
greatest common divisor of p and 2q depending on the
value of Im τc. We see that the integer p is the number
of bions, and that the n-th kink and antikink are located
at τ+n and τ−n , with

τ±n = τc +
n− 1

ωp
(ωβ − 2πiq)± 1

2ω
log

4ω2

ω2 −m2
. (13)

There are p bions (pairs of kink-antikink) equally spaced
on S1, In Fig. 1, we depict the profile of the complexified
height function Σ = (1 − ϕϕ̃)/(1 + ϕϕ̃) of the (p, q) =
(3, 1) solution. It illustrates that general (p, q) solutions
are intrinsically complex, and are not a mere repetition of
single (real or complex) bions. In Fig. 2 we depict other
solutions (p, q) = (2, 0) and (p, q) = (2, 1) in terms of
θ = −2 arctan |ϕ|, which visualizes patterns of transition
between the (metastable) vacua.

Multi-bion contributions : The contributions from
the p-bion solutions can be calculated by performing
the Lefschetz thimble integral associated with the sad-
dle points. In the weak coupling limit g → 0, we can use

!!" " !" #" $"

#

%

!

"

!!" " !" #" $"

#

%

!

"

Fig. 2: Multi-bion solution: θ = −2 arctan |ϕ| for (p, q) =
(2, 0) (left) and for (p, q) = (2, 1) (right). The other pa-
rameters are the same as those in Fig. 1. θ = 0, 2π, ... and
θ = π, 3π, ... correspond to north and south poles of CP 1.

the Gaussian approximation for the fluctuation modes
from the saddle points except the nearly massless modes
parameterized by the quasi moduli parameters (τi,φi).
Thus, we can simplify the Lefschetz thimble analysis by
reducing the degrees of freedom onto the quasi moduli
space.

The leading order contributions come from the region
around the saddle points, where all the kinks are well-
separated in the weak coupling limit. Therefore, the ef-
fective potential can be approximated by that for well-
separated kinks SE → Veff = −mϵβ +

∑2p
i=1(

m
g2 + Vi),

where Vi is the asymptotic interaction potential between
neighboring kink-antikink pair [29]

Vi

m
= ϵi(τi − τi−1)−

4

g2
e−m(τi−τi−1) cos(φi − φi−1),(14)

with τ2n−1 = τ−i , τ2n = τ+i , τ0 = τ2p − β, φ0 =
φ2p (mod 2π), ϵ2n−1 = 0 and ϵ2n = 2ϵ. We find that the
saddle points of Veff are consistent with τ±n in Eq. (13)
for large β and small g . We introduce a Lagrange multi-
plier σ to impose the periodicity as 2πδ(

∑
i τi − β) =

m
∫
dσexp(imσ(

∑
i τi − β)). By generalizing the Lef-

schetz thimble analysis in [21] to the multi-bion contribu-
tion Zp ∝

∫ ∏2p
i=1 dτidφi, exp(−Veff), we obtain the fol-

lowing p-bion contribution to the partition function (See
Appendix. C for the details of calculations.)

Zp

Z0
≈ −2imβ

p
e
− 2pm

g2 Res
σ=0

[
e−imβσ

2p∏

i=1

Ii

]
, (15)

with

Ii =
2m

g2

(
2m

g2
e±

πi
2

)iσ−ϵi Γ ((ϵi − iσ)/2)

Γ (1− (ϵi − iσ)/2)
. (16)

The sign ± is associated with arg[g2] = ±0. This gives a
polynomial of β, whose leading term is of order βp

Zp

Z0
≈ 1

p!

[
2mβΓ(ϵ)

Γ(1− ϵ)
e
− 2m

g2
∓πiϵ

(
2m

g2

)2(1−ϵ)
]p

, (17)

consistent with the dilute gas approximation: Zp/Z0 =
(Z1/Z0)p/p! + O(βp−1). From the p-bion contribution

(p, q)解は無限個のmulti-bion解のタワーを構成！

S ⇡ pS
bion

+ 2⇡i✏l

S
bion

=

2m

g2
+ 2✏ log

! +m

! �m



準モジュライパラメタ (Nearly massless modes)

複素化されたモジュライ空間での実効ポテンシャル

=  kink間相対距離       と相対位相

複素解のThimble積分実行

Real and complex bionsからの寄与

TM, Sakai, Nitta (14)
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(a) θ = −0
(b) θ = +0

Fig. 9: Integration contour, Lefschetz thimbles and dual thimbles for (a) θ = −0 (seen from upper left)

and (b) θ = +0 (seen from lower right). The orange lines are the original extended integration contours,

while four colored (red, blue, yellow and green) lines and surfaces indicate the thimbles and their duals,

respectively. Note that since the integration contour and Lefschetz thimbles are direct products of the τR

direction and lines in (φR,φI , τI), their projected images are lines in the three-dimensional space.

contour for θ = −0. Note that K0 and K′
0 are the identical thimble related by the shift φR →

φR + 2π. By taking into account how the original integration contour is decomposed into the

thimbles (see Fig. 10), the sign of the intersection numbers can be determined as

(n−1 , n0 , n1) =

⎧
⎨

⎩
(−1 , 1 , 0 ) for θ = −0

( 0 , −1 , 1 ) for θ = +0
. (IV.55)

Therefore, the bion contribution has the ambiguity depending on the sign of θ

[IĪ] =

⎧
⎨

⎩
Zσ=0 − Zσ=−1 for θ = −0

Zσ=1 − Zσ=0 for θ = +0
. (IV.56)

c. Integral along Lefschetz Thimbles

Now let us evaluate the integral over the thimbles. Changing the coordinates as

τ → τ ′ = τ − τσ φ→ φ′ = φ− φσ. (IV.57)

we find that the potential becomes

V = 2ϵ

(
mτ ′ + e−mτ ′ cosφ′ + log

2m

ϵg2
+ σπi− iθ

)
. (IV.58)

上図は3次元射影 for ✓ = arg[g2] < 0

Lefschetz Thimble 積分法

CR =
X

�

n�J�

交叉数n� = hCR, K�i

: upward flow  →  Thimble

: down flow  →  Dual thimble

J�

K�

Thimbleは4次元空間上の面に対応
(⌧r,�r) 2 C2
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ストークス現象

· 元の積分径路とdual thimble Kσ との交叉数

不定虚部を生み出す
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(a) θ = −0
(b) θ = +0

Fig. 9: Integration contour, Lefschetz thimbles and dual thimbles for (a) θ = −0 (seen from upper left)

and (b) θ = +0 (seen from lower right). The orange lines are the original extended integration contours,

while four colored (red, blue, yellow and green) lines and surfaces indicate the thimbles and their duals,

respectively. Note that since the integration contour and Lefschetz thimbles are direct products of the τR

direction and lines in (φR,φI , τI), their projected images are lines in the three-dimensional space.

contour for θ = −0. Note that K0 and K′
0 are the identical thimble related by the shift φR →

φR + 2π. By taking into account how the original integration contour is decomposed into the

thimbles (see Fig. 10), the sign of the intersection numbers can be determined as

(n−1 , n0 , n1) =

⎧
⎨

⎩
(−1 , 1 , 0 ) for θ = −0

( 0 , −1 , 1 ) for θ = +0
. (IV.55)

Therefore, the bion contribution has the ambiguity depending on the sign of θ

[IĪ] =

⎧
⎨

⎩
Zσ=0 − Zσ=−1 for θ = −0

Zσ=1 − Zσ=0 for θ = +0
. (IV.56)

c. Integral along Lefschetz Thimbles

Now let us evaluate the integral over the thimbles. Changing the coordinates as

τ → τ ′ = τ − τσ φ→ φ′ = φ− φσ. (IV.57)

we find that the potential becomes

V = 2ϵ

(
mτ ′ + e−mτ ′ cosφ′ + log

2m

ϵg2
+ σπi− iθ

)
. (IV.58)

· Thimble  Jσ に沿った積分

33

(a) integration contour for φ (b) deformation of contour

Fig. 10: Deformation of integration contour. (a) The integration contour can be decomposed into two paths

(orange and blue). One of them corresponds to the thimble with n = 0 and the other can be continuously

deformed into the thimble with n = 1. The shaded regions in the right figure corresponds to the region

where ReV < T ≪ ReVcritical with some real number T .

The thimble Jσ corresponds to the two dimensional plane τ ′ ∈ R, φ′ ∈ iR. We can check that the

potential satisfies

ReV ≥ 2ϵ

(
1 + log

2m

ϵg2

)
, ImV = (σπ − θ)ϵ = const., (IV.59)

for τ ′ ∈ R, φ′ ∈ iR. Integrating over the thimbles, we obtain

Zσ =

∫

R
dτ ′
∫

iR
dφ′ e−V =

i

2m

(
g2eiθ

2m

)2ϵ

e−2πiϵσ Γ (ϵ)2 . (IV.60)

Therefore, the bion contribution is given by

[IĪ] =
1

m

(
g2eiθ

2m

)2ϵ

sin ϵπ Γ (ϵ)2 ×

⎧
⎨

⎩
eπiϵ for θ = −0

e−πiϵ for θ = +0
. (IV.61)

This result is consistent with the one obtained by applying the Bogomolny–Zinn-Justin prescription

for the divergent region τ → −∞, |φ| ≤ π/2 [36]. In this calculation of the complex integral, the

region where the integrand is divergent is avoided by deforming the integration contour as shown in

Fig. 10. This is how one extracts a finite result from the ill-defined integral in the BZJ prescription.

Thus, based on the Lefschetz thimble decomposition of the quasi moduli integral together with the

complexification of the coupling, we obtain an unambiguous definition of the ill-defined moduli

integral.

Zq.m. =
X

�

n�Z�

Lefschetz Thimble 積分法



複素固定点からの寄与

基底エネルギーへの寄与

2

by use of the Bender-Wu recursion relation [25], we ob-
tain the perturbative series for the ground-state energy in
CPN−1 quantum mechanics, whose Borel resummation
contains an imaginary ambiguity for non-supersymmetric
cases. We check the cancellation between the two imagi-
nary ambiguities from the complexified solutions and the
perturbative Borel resummation. Thirdly, we obtain the
exact ground state energy at the near-supersymmetric
regime in the standard Schroedinger equation formalism.
We find out that the exact ground state energy are re-
garded as the full trans-series composed of the perturba-
tive and non-perturbative (real and complex bion) contri-
butions. This is a clear manifestation on the resurgence
structure in CPN−1 quantum mechanics.

Setup of CPN−1 quantum mechanics : The La-
grangian of the CP 1 Lorentzian quantum mechanics with
a fermion takes the form

L = 1
g2 G

[
∂tϕ∂tϕ̄−m2ϕϕ̄

+ iψ̄Dtψ + ϵm(1 + ϕ∂ϕ logG)ψ̄ψ
]
, (.2)

where G is the Fubini-Study metric G = 1
(1+ϕϕ̄)2 and

Dt is the covariant derivative Dtψ = [∂t+∂tϕ∂ϕ logG]ψ.
The parameter ϵ indicates the strength of the interaction
between the bosonic and fermionic degrees of freedom.
ϵ = 1 corresponds to a supersymmetric case. By pro-
jecting quantum states onto the subspace of the Hilbert
space with a fixed fermion number, we obtain the follow-
ing purely bosonic Lagrangian

L =
1

g2
∂tϕ∂tϕ̄

(1 + ϕϕ̄)2
− V (ϕϕ̄), (.3)

V (ϕϕ̄) ≡ 1

g2
m2ϕϕ̄

(1 + ϕϕ̄)2
− ϵm

1− ϕϕ̄

1 + ϕϕ̄
, (.4)

where we have chosen the fermion number so that the su-
persymmetric ground state for ϵ = 1 is contained in the
subspace of the Hilbert space. The associated Hamilto-
nian H of the bosonic theory is written as

H = −g2(1 + ϕϕ̄)2
∂

∂ϕ

∂

∂ϕ̄
+ V (ϕϕ̄). (.5)

Here, we also exhibit the Euclidean action as

SE =

∫
dτ

[
1

g2
∂τϕ∂τ ϕ̄

(1 + ϕϕ̄)2
+ V (ϕϕ̄)

]
. (.6)

The CPN−1 models contains ϕi (i = 1, ..., N) compo-
nents with mi (i = 1, ..., N) and the Fubini-study met-

ric Gij̄ = ∂2

∂ϕi∂ψ̄j̄ log(1 +
∑N

k |ϕk|2). The projected La-

grangian of CPN−1 models is written as

L =
1

g2
Gij̄

[
∂tϕ

i∂tϕ̄
j −mimjϕ

iϕ̄j
]
− ϵ∆µ , (.7)

with µ =
∑N

j=1
mj |ϕj |2
1+|ϕj |2 and ∆ = Gj̄i∂i∂̄j̄ . The complex-

ification of the variables are also parallel to that of the
CP 1 model.

(a) Σ(τ) for real bion (b) Σ(τ) for complex
bion

Fig. 1: Kink profile of real bion and regularized complex bion.

Contribution from Bion solutions : We first con-
sider the CP 1 model. As shown in [24], the complexified
CP 1 model with fermion degrees of freedom has two ex-
act solutions, a real bion and a complex bion: The real
bion solution in CP 1 quantum mechanics is derived based
on the energy conservation low as

ϕ = eiφ0

√
ω2

ω2 −m2

1

i sinhω(τ − τ0)
, (.8)

where ω is ω ≡ m
√

1 + 2ϵg2

m . The parameters τ0 and φ0
are moduli parameters. We here complexfy the variable
as

(ϕ, ϕ̄) −→ (ϕ, ϕ̃) = (ϕC
R + iϕC

I , ϕC
R − iϕC

I ) , (.9)

which means that the two complex variables ϕ, ϕ̃ are in-
dependent. Then, the complex bion solution is obtained
by the similar procedure to the real bion solution as

ϕ = eiφ0

√
ω2

ω2 −m2

1

coshω(τ − τ0)
, ϕ̃ = −ϕ̄ . (.10)

The vacuum transition in these solutions is depicted by
use of the function Σ(τ) = m ϕϕ̃

1+ϕϕ̃ in Fig. 1.
The contributions from these solutions are calculated

by performing the Lefschetz thimble integral associated
with the saddle points. The leading order bion contribu-
tion to the ground state energy for small g and λ is given
by the quasi moduli integral

Ebion ≈ −8m4

πg4

∫
dτrdφr exp (−Veff) . (.11)

Veff ≈ 2m

g2
− 4m

g2
e−mτr cosφr + 2ϵmτr. (.12)

where τr and φr are the relative distance and the relative
phase between local BPS components in the bion con-
figurations. These two parameters correspond to quasi-
moduli parameters, which are nearly massless modes
around the real and complex bion solutions. We then
obtain the contribution to the ground-state energy from
the real and complex bion solutions

Ebion = −2m

(
g2

2m

)2(ϵ−1)
sin ϵπ

π
Γ (ϵ)2 e

− 2m
g2

×
{

eπiϵ for θ = −0
e−πiϵ for θ = +0

. (.13)

厳密結果の p=1 部分と完全に一致

= �2me
� 2m

g2 �✏+ 4m

✓
� + log

2m

g2
± i⇡

2

◆
e
� 2m

g2 �✏2 +O(�✏3)

2

Lagrangian

g2L = G
[
|∂tϕ|2 − |mϕ|2 + iψ̄Dtψ

]
− ϵ

∂2µ

∂ϕ∂ϕ̄
ψψ̄, (1)

where ϕ is the inhomogeneous coordinate, G =
∂ϕ∂ϕ̄ log(1 + |ϕ|2) is the Fubini-Study metric, Dt = ∂t +
∂tϕ∂ϕ logG is the pull back of the covariant derivative
and µ = m|ϕ|2/(1 + |ϕ|2) is the moment map associated
with the U(1) symmetry ϕ → eiθϕ. The parameter ϵ is
the boson-fermion coupling and the Lagrangian becomes
supersymmetric at ϵ = 1. Since the fermion number
F = Gψψ̄ commutes with the Hamiltonian, the Hilbert
space can be decomposed into two subspaces with F = 1
and F = 0. By projecting quantum states onto the sub-
space which contains the ground state (F = 1), we obtain
the bosonic Lagrangian L = |∂tϕ|2/(g2(1 + |ϕ|2)2) − V
with the potential

V =
1

g2
m2|ϕ|2

(1 + |ϕ|2)2 − ϵm
1− |ϕ|2

1 + |ϕ|2 . (2)

We note that θ(≡ −2 arctan |ϕ|) = 0,π are global and
metastable vacua respectively.
For ϵ = 1, the ground state wave function Ψ0 preserv-

ing the SUSY is given as a zero energy solution of the
Schrödinger equation

Hϵ=1Ψ0 =

[
−g2(1 + |ϕ|2)2 ∂

∂ϕ

∂

∂ϕ̄
+ Vϵ=1

]
Ψ0 = 0. (3)

It is exactly solved as Ψ0 = ⟨ϕ|0⟩ = exp(−µ/g2). For ϵ ≈
1, the leading order correction to the ground state wave
function can be obtained by expanding the Schrödinger
equation with respect to small δϵ ≡ ϵ − 1 as ⟨ϕ|δΨ⟩.
Correspondingly, the ground state energy E can also be
expanded

E = δϵE(1) + δϵ2 E(2) + · · · . (4)

These expansion coefficients can be determined by the
standard Rayleigh-Schrödinger perturbation theory as
E(1) = ⟨0|δH|0⟩/⟨0|0⟩, E(2) = −⟨δΨ|Hϵ=1|δΨ⟩/⟨0|0⟩, · · ·
with δH = H − Hϵ=1. We find that these coefficients
E(i) are real without imaginary ambiguities and can be
expanded in absolutely convergent power series with re-
spect to the nonperturbative exponential exp(−2m/g2)

E(i) =
∞∑

p=0

E(i)
p exp(−2pm/g2), (5)

where the zero-th term E(i)
0 corresponds to the pertur-

bative contributions on the trivial vacuum (perturbative
vacuum). The coefficients of E(1) [21] are

E(1)
0 = −m+ g2, E(1)

p = −2m, (p ≥ 1). (6)

If the coefficients of E(2) are expanded in powers of g2,
they give factorially divergent asymptotic series, which

can be Borel-resummed. Hence we rewrite the coefficient
in the form of the Borel transform (See Appendix. A for
the details of calculations.) as

E(2)
0 = g2 + 2m

∫ ∞

0
dt

e−t

t− 2m
g2±i0

, (7)

E(2)
p = 2m

∫ ∞

0
dt e−t

{
(p+ 1)2

t− 2m
g2±i0

+
(p− 1)2

t+ 2m
g2

}

+ 4mp2
(
γ + log

2m

g2
± πi

2

)
, (p ≥ 1). (8)

Note that the imaginary ambiguities associated to the

Borel resummation is manifest in the first term of E(2)
p

with g2±i0, which is compensated by the imaginary part

±iπ/2 in the last term of E(2)
p+1, reproducing the original

real E(2) precisely.
We can now recognize the full resurgence structure to

all orders of nonperturbative exponential: imaginary am-
biguity of the non-Borel summable divergent perturba-
tion series on the p-bion background in the first term of

E(2)
p is cancelled by the imaginary ambiguity of the clas-

sical contribution of (p+1)-bion contribution in the last

term of E(2)
p+1. We note the absence of powers of g2 in

the imaginary ambiguity, which will allow us to recover
non-Borel summable perturbation series on the p-bion
background completely from the (p+1)-bion contribution
through the dispersion relation, without computing per-
turbative corrections around the multi-bion background
explicitly. Moreover, if we observe that E(2)/m is an
even function of m/g2, we can also understand the pres-
ence of Borel-summable part (second term of the first
line in Eq.(8)). Thus all the terms can now be repro-
duced through resurgence relation and the sign change
of m/g2, if we can compute all the classical p-bion con-
tributions.

Multi-bion solutions : Nonperturbative contribu-
tions to the ground state energy come from the saddle
points of the path integral Z =

∫
DϕDϕ̃ e−SE ∼ e−βE

(for large β), where we have complexified the degrees of
freedom by regarding ϕ ≡ ϕC

R + iϕC
I and ϕ̃ ≡ ϕC

R − iϕC
I

as independent holomorphic variables, and imposed the
periodic boundary condition ϕ(τ + β) = ϕ(τ) and for

ϕ̃. The Euclidean action SE =
∫ β
0 dτ [∂τϕ∂τ ϕ̃/(g2(1 +

ϕϕ̃)2) + V (ϕϕ̃)] has two conserved Noether charges as-
sociated with the complexification of the Euclidean time
translation τ → τ + a and the phase rotation (ϕ, ϕ̃) →
(eibϕ, e−ibϕ̃) (a, b ∈ C). Using the corresponding con-
servation laws, we can obtain the following solution of
the equation of motion with nontrivial contribution in a
β → ∞ limit,

ϕ = eiφc
f(τ − τc)

sin2 α
, ϕ̃ = e−iφc

f(τ − τc)

sin2 α
, (9)

where (τc,φc) are complex moduli parameters associated
with the symmetry and f(τ) is the elliptic function

f(τ) = cs(Ωτ, k) ≡ cn(Ωτ, k)/sn(Ωτ, k), (10)

E(2)
p = 2m

Z 1

0
dte�t

"
(p+ 1)

2

t� 2m
g2±i0

+

(p� 1)

2

t+ 2m
g2

#
+ 4mp2

✓
� + log

2m

g2
± i⇡

2

◆



全ての複素固定点からの寄与

基底エネルギーへの寄与

厳密結果との精確な一致

2

Lagrangian

g2L = G
[
|∂tϕ|2 − |mϕ|2 + iψ̄Dtψ

]
− ϵ

∂2µ

∂ϕ∂ϕ̄
ψψ̄, (1)

where ϕ is the inhomogeneous coordinate, G =
∂ϕ∂ϕ̄ log(1 + |ϕ|2) is the Fubini-Study metric, Dt = ∂t +
∂tϕ∂ϕ logG is the pull back of the covariant derivative
and µ = m|ϕ|2/(1 + |ϕ|2) is the moment map associated
with the U(1) symmetry ϕ → eiθϕ. The parameter ϵ is
the boson-fermion coupling and the Lagrangian becomes
supersymmetric at ϵ = 1. Since the fermion number
F = Gψψ̄ commutes with the Hamiltonian, the Hilbert
space can be decomposed into two subspaces with F = 1
and F = 0. By projecting quantum states onto the sub-
space which contains the ground state (F = 1), we obtain
the bosonic Lagrangian L = |∂tϕ|2/(g2(1 + |ϕ|2)2) − V
with the potential

V =
1

g2
m2|ϕ|2

(1 + |ϕ|2)2 − ϵm
1− |ϕ|2

1 + |ϕ|2 . (2)

We note that θ(≡ −2 arctan |ϕ|) = 0,π are global and
metastable vacua respectively.
For ϵ = 1, the ground state wave function Ψ0 preserv-

ing the SUSY is given as a zero energy solution of the
Schrödinger equation

Hϵ=1Ψ0 =

[
−g2(1 + |ϕ|2)2 ∂

∂ϕ

∂

∂ϕ̄
+ Vϵ=1

]
Ψ0 = 0. (3)

It is exactly solved as Ψ0 = ⟨ϕ|0⟩ = exp(−µ/g2). For ϵ ≈
1, the leading order correction to the ground state wave
function can be obtained by expanding the Schrödinger
equation with respect to small δϵ ≡ ϵ − 1 as ⟨ϕ|δΨ⟩.
Correspondingly, the ground state energy E can also be
expanded

E = δϵE(1) + δϵ2 E(2) + · · · . (4)

These expansion coefficients can be determined by the
standard Rayleigh-Schrödinger perturbation theory as
E(1) = ⟨0|δH|0⟩/⟨0|0⟩, E(2) = −⟨δΨ|Hϵ=1|δΨ⟩/⟨0|0⟩, · · ·
with δH = H − Hϵ=1. We find that these coefficients
E(i) are real without imaginary ambiguities and can be
expanded in absolutely convergent power series with re-
spect to the nonperturbative exponential exp(−2m/g2)

E(i) =
∞∑

p=0

E(i)
p exp(−2pm/g2), (5)

where the zero-th term E(i)
0 corresponds to the pertur-

bative contributions on the trivial vacuum (perturbative
vacuum). The coefficients of E(1) [21] are

E(1)
0 = −m+ g2, E(1)

p = −2m, (p ≥ 1). (6)

If the coefficients of E(2) are expanded in powers of g2,
they give factorially divergent asymptotic series, which

can be Borel-resummed. Hence we rewrite the coefficient
in the form of the Borel transform (See Appendix. A for
the details of calculations.) as

E(2)
0 = g2 + 2m

∫ ∞

0
dt

e−t

t− 2m
g2±i0

, (7)

E(2)
p = 2m

∫ ∞

0
dt e−t

{
(p+ 1)2

t− 2m
g2±i0

+
(p− 1)2

t+ 2m
g2

}

+ 4mp2
(
γ + log

2m

g2
± πi

2

)
, (p ≥ 1). (8)

Note that the imaginary ambiguities associated to the

Borel resummation is manifest in the first term of E(2)
p

with g2±i0, which is compensated by the imaginary part

±iπ/2 in the last term of E(2)
p+1, reproducing the original

real E(2) precisely.
We can now recognize the full resurgence structure to

all orders of nonperturbative exponential: imaginary am-
biguity of the non-Borel summable divergent perturba-
tion series on the p-bion background in the first term of

E(2)
p is cancelled by the imaginary ambiguity of the clas-

sical contribution of (p+1)-bion contribution in the last

term of E(2)
p+1. We note the absence of powers of g2 in

the imaginary ambiguity, which will allow us to recover
non-Borel summable perturbation series on the p-bion
background completely from the (p+1)-bion contribution
through the dispersion relation, without computing per-
turbative corrections around the multi-bion background
explicitly. Moreover, if we observe that E(2)/m is an
even function of m/g2, we can also understand the pres-
ence of Borel-summable part (second term of the first
line in Eq.(8)). Thus all the terms can now be repro-
duced through resurgence relation and the sign change
of m/g2, if we can compute all the classical p-bion con-
tributions.

Multi-bion solutions : Nonperturbative contribu-
tions to the ground state energy come from the saddle
points of the path integral Z =

∫
DϕDϕ̃ e−SE ∼ e−βE

(for large β), where we have complexified the degrees of
freedom by regarding ϕ ≡ ϕC

R + iϕC
I and ϕ̃ ≡ ϕC

R − iϕC
I

as independent holomorphic variables, and imposed the
periodic boundary condition ϕ(τ + β) = ϕ(τ) and for

ϕ̃. The Euclidean action SE =
∫ β
0 dτ [∂τϕ∂τ ϕ̃/(g2(1 +

ϕϕ̃)2) + V (ϕϕ̃)] has two conserved Noether charges as-
sociated with the complexification of the Euclidean time
translation τ → τ + a and the phase rotation (ϕ, ϕ̃) →
(eibϕ, e−ibϕ̃) (a, b ∈ C). Using the corresponding con-
servation laws, we can obtain the following solution of
the equation of motion with nontrivial contribution in a
β → ∞ limit,

ϕ = eiφc
f(τ − τc)

sin2 α
, ϕ̃ = e−iφc

f(τ − τc)

sin2 α
, (9)

where (τc,φc) are complex moduli parameters associated
with the symmetry and f(τ) is the elliptic function

f(τ) = cs(Ωτ, k) ≡ cn(Ωτ, k)/sn(Ωτ, k), (10)

E(2)
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0
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9

Then, the contour integral for the p-bion contribution

Zp

Z0
≈ mβ

p
e
− 2pm

g2

∫
dσ

2π
e−iσmβ

2p∏

i=1

Ii|s=0, (C20)

can be evaluated by picking up the poles at σ = −2ik
and σ = −2i(ϵ + k) (k ∈ Z≥0). In the β → ∞ limit,
the p-th order pole at σ = 0 gives the leading order term
Eq. (15)

Zp
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≈ − imβ
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e
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g2 Res
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∂

∂σ

)p−1

×
[
8im2

g4
e−

iσmβ
p

(
2m

g2
e±

πi
2

)2(iσ−ϵ)

×
Γ
(
ϵ− iσ

2

)

Γ
(
1− ϵ+ iσ

2

) Γ
(
1− iσ

2

)

Γ
(
1 + iσ

2

)
]p

. (C21)

The leading order term Eq. (17) is

Zp

Z0
≈ 1

p!

[
2mβΓ (ϵ)

Γ (1− ϵ)
e
− 2m

g2
∓πiϵ

(
2m
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)2(1−ϵ)
]p

.

(C22)

This is consistent with the dilute gas approximation. In
the supersymmetric case ϵ = 1, Zp/Z0 vanishes due to
the factor 1/Γ(1− ϵ). In the near SUSY case, we obtain

lim
ϵ→1

∂

∂ϵ

Zp

Z0
≈ 2mβe

− 2pm

g2 , (C23)

where we have used

lim
x→0

∂x
1

Γ(x)
= 1. (C24)

Then we obtain

lim
ϵ→1
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This is consistent with the exact result. Using the rela-
tion

1
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ϵ→1
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σ→0
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]
X,

we can show that
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Therefore, the second order coefficient of the ground state
energy in Eq. (20) is given by

1

2
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Appendix D: Perturbation series on trivial vacuum

In this section we derive the perturbative part of the
ground state energy by using the Bender-Wu method.
Since the ground state is invariant under the phase ro-
tation ϕ → eibϕ, the corresponding wave function Ψ a
function of |ϕ|. By redefining the wave function and the
coordinate as

Ψ = e−x2

ψ(x), |ϕ| = ηx, η ≡ g√
m
. (D1)

The Schrödinger equation can be rewritten as

m

[
− 1

4
(1 + η2x2)2

{
∂2

∂x2
+ (1− 4x2)

1

x

∂

∂x

}

+V (x)

]
ψ = Eψ, (D2)

where the potential is

V (x) = (1− x2)(1 + η2x2)2 +
x2

(1 + η2x2)2
− ϵ

1− η2x2

1 + η2x2
.

(D3)

Let us expand the energy and the wave function with
respect to η

E

m
=

∞∑

l=0

Alη
2l, ψ =

∞∑

l=0

ψl(x)η
2l. (D4)

Then, the Schrödinger equation (H̃ − E)ψ = 0 can be
expanded as

0 =
1

4

4∑

i=0

(
4
i

)
x2i
[
ψ′′
l−i + (1− 4x2)

1

x
ψ′
l−i

− 4(1− x2)ψl−i

]

+
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i=0

Al

(
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)

+ (ϵ− x2)ψl − x4ϵψl−2, (D5)
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完全なトランス級数展開



2

Lagrangian

g2L = G
[
|∂tϕ|2 − |mϕ|2 + iψ̄Dtψ

]
− ϵ

∂2µ

∂ϕ∂ϕ̄
ψψ̄, (1)

where ϕ is the inhomogeneous coordinate, G =
∂ϕ∂ϕ̄ log(1 + |ϕ|2) is the Fubini-Study metric, Dt = ∂t +
∂tϕ∂ϕ logG is the pull back of the covariant derivative
and µ = m|ϕ|2/(1 + |ϕ|2) is the moment map associated
with the U(1) symmetry ϕ → eiθϕ. The parameter ϵ is
the boson-fermion coupling and the Lagrangian becomes
supersymmetric at ϵ = 1. Since the fermion number
F = Gψψ̄ commutes with the Hamiltonian, the Hilbert
space can be decomposed into two subspaces with F = 1
and F = 0. By projecting quantum states onto the sub-
space which contains the ground state (F = 1), we obtain
the bosonic Lagrangian L = |∂tϕ|2/(g2(1 + |ϕ|2)2) − V
with the potential

V =
1

g2
m2|ϕ|2

(1 + |ϕ|2)2 − ϵm
1− |ϕ|2

1 + |ϕ|2 . (2)

We note that θ(≡ −2 arctan |ϕ|) = 0,π are global and
metastable vacua respectively.
For ϵ = 1, the ground state wave function Ψ0 preserv-

ing the SUSY is given as a zero energy solution of the
Schrödinger equation

Hϵ=1Ψ0 =

[
−g2(1 + |ϕ|2)2 ∂

∂ϕ

∂

∂ϕ̄
+ Vϵ=1

]
Ψ0 = 0. (3)

It is exactly solved as Ψ0 = ⟨ϕ|0⟩ = exp(−µ/g2). For ϵ ≈
1, the leading order correction to the ground state wave
function can be obtained by expanding the Schrödinger
equation with respect to small δϵ ≡ ϵ − 1 as ⟨ϕ|δΨ⟩.
Correspondingly, the ground state energy E can also be
expanded

E = δϵE(1) + δϵ2 E(2) + · · · . (4)

These expansion coefficients can be determined by the
standard Rayleigh-Schrödinger perturbation theory as
E(1) = ⟨0|δH|0⟩/⟨0|0⟩, E(2) = −⟨δΨ|Hϵ=1|δΨ⟩/⟨0|0⟩, · · ·
with δH = H − Hϵ=1. We find that these coefficients
E(i) are real without imaginary ambiguities and can be
expanded in absolutely convergent power series with re-
spect to the nonperturbative exponential exp(−2m/g2)

E(i) =
∞∑

p=0

E(i)
p exp(−2pm/g2), (5)

where the zero-th term E(i)
0 corresponds to the pertur-

bative contributions on the trivial vacuum (perturbative
vacuum). The coefficients of E(1) [21] are

E(1)
0 = −m+ g2, E(1)

p = −2m, (p ≥ 1). (6)

If the coefficients of E(2) are expanded in powers of g2,
they give factorially divergent asymptotic series, which

can be Borel-resummed. Hence we rewrite the coefficient
in the form of the Borel transform (See Appendix. A for
the details of calculations.) as

E(2)
0 = g2 + 2m

∫ ∞

0
dt

e−t

t− 2m
g2±i0

, (7)

E(2)
p = 2m

∫ ∞

0
dt e−t

{
(p+ 1)2

t− 2m
g2±i0

+
(p− 1)2

t+ 2m
g2

}

+ 4mp2
(
γ + log

2m

g2
± πi

2

)
, (p ≥ 1). (8)

Note that the imaginary ambiguities associated to the

Borel resummation is manifest in the first term of E(2)
p

with g2±i0, which is compensated by the imaginary part

±iπ/2 in the last term of E(2)
p+1, reproducing the original

real E(2) precisely.
We can now recognize the full resurgence structure to

all orders of nonperturbative exponential: imaginary am-
biguity of the non-Borel summable divergent perturba-
tion series on the p-bion background in the first term of

E(2)
p is cancelled by the imaginary ambiguity of the clas-

sical contribution of (p+1)-bion contribution in the last

term of E(2)
p+1. We note the absence of powers of g2 in

the imaginary ambiguity, which will allow us to recover
non-Borel summable perturbation series on the p-bion
background completely from the (p+1)-bion contribution
through the dispersion relation, without computing per-
turbative corrections around the multi-bion background
explicitly. Moreover, if we observe that E(2)/m is an
even function of m/g2, we can also understand the pres-
ence of Borel-summable part (second term of the first
line in Eq.(8)). Thus all the terms can now be repro-
duced through resurgence relation and the sign change
of m/g2, if we can compute all the classical p-bion con-
tributions.

Multi-bion solutions : Nonperturbative contribu-
tions to the ground state energy come from the saddle
points of the path integral Z =

∫
DϕDϕ̃ e−SE ∼ e−βE

(for large β), where we have complexified the degrees of
freedom by regarding ϕ ≡ ϕC

R + iϕC
I and ϕ̃ ≡ ϕC

R − iϕC
I

as independent holomorphic variables, and imposed the
periodic boundary condition ϕ(τ + β) = ϕ(τ) and for

ϕ̃. The Euclidean action SE =
∫ β
0 dτ [∂τϕ∂τ ϕ̃/(g2(1 +

ϕϕ̃)2) + V (ϕϕ̃)] has two conserved Noether charges as-
sociated with the complexification of the Euclidean time
translation τ → τ + a and the phase rotation (ϕ, ϕ̃) →
(eibϕ, e−ibϕ̃) (a, b ∈ C). Using the corresponding con-
servation laws, we can obtain the following solution of
the equation of motion with nontrivial contribution in a
β → ∞ limit,

ϕ = eiφc
f(τ − τc)

sin2 α
, ϕ̃ = e−iφc

f(τ − τc)

sin2 α
, (9)

where (τc,φc) are complex moduli parameters associated
with the symmetry and f(τ) is the elliptic function

f(τ) = cs(Ωτ, k) ≡ cn(Ωτ, k)/sn(Ωτ, k), (10)
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− ϵ
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ψψ̄, (1)

where ϕ is the inhomogeneous coordinate, G =
∂ϕ∂ϕ̄ log(1 + |ϕ|2) is the Fubini-Study metric, Dt = ∂t +
∂tϕ∂ϕ logG is the pull back of the covariant derivative
and µ = m|ϕ|2/(1 + |ϕ|2) is the moment map associated
with the U(1) symmetry ϕ → eiθϕ. The parameter ϵ is
the boson-fermion coupling and the Lagrangian becomes
supersymmetric at ϵ = 1. Since the fermion number
F = Gψψ̄ commutes with the Hamiltonian, the Hilbert
space can be decomposed into two subspaces with F = 1
and F = 0. By projecting quantum states onto the sub-
space which contains the ground state (F = 1), we obtain
the bosonic Lagrangian L = |∂tϕ|2/(g2(1 + |ϕ|2)2) − V
with the potential

V =
1

g2
m2|ϕ|2

(1 + |ϕ|2)2 − ϵm
1− |ϕ|2

1 + |ϕ|2 . (2)

We note that θ(≡ −2 arctan |ϕ|) = 0,π are global and
metastable vacua respectively.
For ϵ = 1, the ground state wave function Ψ0 preserv-

ing the SUSY is given as a zero energy solution of the
Schrödinger equation

Hϵ=1Ψ0 =

[
−g2(1 + |ϕ|2)2 ∂
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∂

∂ϕ̄
+ Vϵ=1

]
Ψ0 = 0. (3)

It is exactly solved as Ψ0 = ⟨ϕ|0⟩ = exp(−µ/g2). For ϵ ≈
1, the leading order correction to the ground state wave
function can be obtained by expanding the Schrödinger
equation with respect to small δϵ ≡ ϵ − 1 as ⟨ϕ|δΨ⟩.
Correspondingly, the ground state energy E can also be
expanded

E = δϵE(1) + δϵ2 E(2) + · · · . (4)

These expansion coefficients can be determined by the
standard Rayleigh-Schrödinger perturbation theory as
E(1) = ⟨0|δH|0⟩/⟨0|0⟩, E(2) = −⟨δΨ|Hϵ=1|δΨ⟩/⟨0|0⟩, · · ·
with δH = H − Hϵ=1. We find that these coefficients
E(i) are real without imaginary ambiguities and can be
expanded in absolutely convergent power series with re-
spect to the nonperturbative exponential exp(−2m/g2)

E(i) =
∞∑

p=0

E(i)
p exp(−2pm/g2), (5)

where the zero-th term E(i)
0 corresponds to the pertur-

bative contributions on the trivial vacuum (perturbative
vacuum). The coefficients of E(1) [21] are

E(1)
0 = −m+ g2, E(1)

p = −2m, (p ≥ 1). (6)

If the coefficients of E(2) are expanded in powers of g2,
they give factorially divergent asymptotic series, which

can be Borel-resummed. Hence we rewrite the coefficient
in the form of the Borel transform (See Appendix. A for
the details of calculations.) as

E(2)
0 = g2 + 2m

∫ ∞

0
dt

e−t

t− 2m
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Note that the imaginary ambiguities associated to the

Borel resummation is manifest in the first term of E(2)
p

with g2±i0, which is compensated by the imaginary part

±iπ/2 in the last term of E(2)
p+1, reproducing the original

real E(2) precisely.
We can now recognize the full resurgence structure to

all orders of nonperturbative exponential: imaginary am-
biguity of the non-Borel summable divergent perturba-
tion series on the p-bion background in the first term of

E(2)
p is cancelled by the imaginary ambiguity of the clas-

sical contribution of (p+1)-bion contribution in the last

term of E(2)
p+1. We note the absence of powers of g2 in

the imaginary ambiguity, which will allow us to recover
non-Borel summable perturbation series on the p-bion
background completely from the (p+1)-bion contribution
through the dispersion relation, without computing per-
turbative corrections around the multi-bion background
explicitly. Moreover, if we observe that E(2)/m is an
even function of m/g2, we can also understand the pres-
ence of Borel-summable part (second term of the first
line in Eq.(8)). Thus all the terms can now be repro-
duced through resurgence relation and the sign change
of m/g2, if we can compute all the classical p-bion con-
tributions.

Multi-bion solutions : Nonperturbative contribu-
tions to the ground state energy come from the saddle
points of the path integral Z =

∫
DϕDϕ̃ e−SE ∼ e−βE

(for large β), where we have complexified the degrees of
freedom by regarding ϕ ≡ ϕC

R + iϕC
I and ϕ̃ ≡ ϕC

R − iϕC
I

as independent holomorphic variables, and imposed the
periodic boundary condition ϕ(τ + β) = ϕ(τ) and for

ϕ̃. The Euclidean action SE =
∫ β
0 dτ [∂τϕ∂τ ϕ̃/(g2(1 +

ϕϕ̃)2) + V (ϕϕ̃)] has two conserved Noether charges as-
sociated with the complexification of the Euclidean time
translation τ → τ + a and the phase rotation (ϕ, ϕ̃) →
(eibϕ, e−ibϕ̃) (a, b ∈ C). Using the corresponding con-
servation laws, we can obtain the following solution of
the equation of motion with nontrivial contribution in a
β → ∞ limit,

ϕ = eiφc
f(τ − τc)

sin2 α
, ϕ̃ = e−iφc

f(τ − τc)

sin2 α
, (9)

where (τc,φc) are complex moduli parameters associated
with the symmetry and f(τ) is the elliptic function
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全てのMulti-bion解の寄与に基づく
完全なリサージェンス構造を確認！



4次元Yang-MillsやQCDでは？



QCDにおける赤外リノーマロン不定性 ‘t Hooft(79)

the dynamics of the theory for L ⌧ ⇤QCD�1, which is carried either by instanton-monopoles

or bound states of instanton-monopoles known as bions.

On the other hand, non-abelian gauge theories on R4 are strongly coupled, and non-

perturbative e↵ects are notable. Even so, one may still hope that certain processes at short

distance scales, or large momentum transfer1 Q2 >> ⇤2
QCD, are computable in perturbation

theory. In a certain class of n loop diagrams, however, the characteristic momentum running

through the loops is not Q2, but is exponentially suppressed with the number of loops2 n.

This suppression leads to n! growth of the diagram upon integration over the momentum

P running through the chain of loops (see the right panel of Figure 1), rendering the loop

expansion non-Borel summable (for review see [10, 11]). Another way of saying this is that

the Borel plane contains poles on the real axis, which generate ambiguities in the calculation,

depending on whether the pole is circumvented from above or from below. The class of

diagrams su↵ering from this problem are referred to as the renormalon diagrams and the

corresponding non-Borel summability is the (in)famous renormalon problem [12].

Borel non-summability of the perturbation theory is not in itself surprising and was

argued by Dyson long time ago3 [14]. This problem also appears in quantum mechanics, but

there the divergence is caused by the factorial proliferation of the number of the Feynman

diagrams. In fact, one finds that such divergence is cured by instanton–anti-instanton events

[15, 16], and has a priori nothing to do with the renormalon problem.

Figure 1. Left: the vacuum polarization with all corrections. Right: Particular contribution to the
vacuum polarization often referred to as the renormalon diagram.

It was recently suggested in [17, 18] that IR renormalon ambiguity cancellation can be

understood in terms of semi-classical instanton-monopole solutions appearing in the theory

on R3 ⇥ S1, but which do not appear on R4. This idea was substantiated by the detailed

analysis of two-dimensional models on R ⇥ S1 [19–22], which have extra non-perturbative

saddles compared to the theory on R2 (these are analogous to the instanton-monopoles in

gauge theories). Since these theories reduce to quantum mechanics for small L, a resurgent

1Capital letters are used to denote the 4-momenta, and small letters denote the spatial 3-momenta.
2This suppression is caused by the appearance of logarithms in the one loop vacuum polarization diagrams

(see Section 2 and [10, 11] for more details.), which we revisit in this work on R3 ⇥ S

1.
3Although it is true that the perturbation series is divergent, it was pointed out that Dyson’s argument

may not be entirely valid [13].
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(
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2
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V [R] = −4κL

g2
cos θ2 e

−κR (10)

正の実軸上の特異点

Then, we can define the perturbative sum for the non-alternating series as the analytic con-

tinuation of B0(g2) in the g2 complex plane from negative coupling, g2 < 0, to the positive

real axis, g2 > 0. This can be done in one of the two ways as shown in Fig. 2. Approaching

the positive real axis clock-wise (from above) and counter-clock-wise (from below).

B0(|g2| ± i�) = ReB0(|g2|)± i ImB0(|g2|) where ImB0(|g2|) ⇤ e�2SI ⇤ e�2A/g2 (6.4)

is the ambiguous part, and is a manifestation of non-Borel-summability [compare with (1.22)].

A definition of the Borel sum equivalent to what we described above through analytic

continuation in the complex g2-plane is the directional (sectorial) Borel sum. Define

S�P (g2) ⇥ B�(g
2) =

1

g2

� ⌅·ei�

0
BP (t) e�t/g2dt, (6.5)

C+

C�

t

Figure 9. Lateral, or right and left, Borel sums. Dark circles are singularities (poles or branch
points). Whenever a singularity exists between the right and left Borel sums, the theory is non-Borel
summable. The singular direction in the t-plane corresponds to a Stokes line in the complex g2-plane,
see Fig.2. The di�erence of the sectorial sums in passing from ⇥ = 0� to ⇥ = 0+ is the Stokes “jump”
across a Stokes ray.

A special case of this is the lateral Borel sum. The function B�±(g2) is associated with

contours just above and just below the ray at angle ⇥, and is called right (left) Borel resum-

mation. If there are no singular points in the ⇥ direction, then the left and right Borel sums

are equal, and the theory is sectorial Borel summable in the ⇥-direction. A theory for which

there are no singularities on ⇥ = 0 is called Borel summable in physics. In many cases, there

is a ray of singular points of the Borel transform BP (t), as shown in Figure 9. Then, the

theory is non-Borel summable, but left and right Borel summable. The ambiguity described

above, associated with whether we approach the real positive axis from above or below in

the complex g2-plane, in the latter language, maps to the choice of the integration contour

in the Laplace-transform. The integral is, of course, dependent on the choice of the contour,
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大まかには 2SI /Nc 作用 

QCD scaleに関連

◆アドラー関数と赤外リノーマロン

Im [Bii]�=0± � e�2nSI/N
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αs(µ)β0

(2)

B(g2) = ReB ± iπ
1
β0

e
8π

β0g2(µ) (3)

±2e−1/g2

g2
(4)

q(τ) (5)

V (x) (6)

x (7)

τ (8)

0 ≤ φ < 2π (9)

θ2 ≡ φ = 0 (10)

V [R] = −4κL

g2
cos θ2 e−κR (11)

・Renormalized loop挿入によりfurther subtraction不要 

・各loop寄与は  

・外線運動量Qだけに依存しUV & IR finite

the Borel integral of the divergent series is indeed cancelled by the twofold ambiguity

in the exponential term. Without more knowledge of the exact function than what is

usually available in field theories, this is a heuristic line of thought. It also assigns a

privileged role to Borel summation, as sign-alternating series (a < 0) are then believed
not to require adding exponentially small terms, while from the point of view of (2.4)

there is no difference between sign-alternating and fixed-sign series. As will be seen later,

the chain

fixed-sign factorial
divergence

=⇒ ambiguity of the
Borel integral

=⇒ addition of exponentially
small terms

(2.13)

is supported by physics arguments and calculations in toy models. However, it is impor-

tant to bear in mind that it is not rigorous.

2.2 Renormalons

This section provides a first, non-technical introduction to renormalon divergence. We

begin with a short and classic calculation and interpret it afterwards.
Consider the correlation functions of two vector currents jµ = q̄γµq of massless quarks

(−i)
∫

d4x e−iqx ⟨0|T (jµ(x)jν(0))|0⟩ =
(

qµqν − q2gµν

)

Π(Q2) (2.14)

with Q2 = −q2. We now compute the contribution of the fermion bubble diagrams
shown in Fig. 1 to the Adler function

D(Q2) = 4π2 dΠ(Q2)

dQ2
. (2.15)

The set of selected diagrams is gauge-invariant, but it is not the only set of diagrams

that contributes to renormalon divergence. It is selected here for illustration and a

systematic investigation is postponed to Section 3. Renormalons were originally found

in bubble diagrams (Gross & Neveu 1974; Lautrup 1977; ’t Hooft 1977), and these
diagrams still feature so prominent in discussions of renormalons that sometimes they

are even identified with them.

The Adler function requires no additional subtractions beyond those contained in

the renormalized QCD Lagrangian. Therefore no regularization is needed, provided the

fermion loop insertions are renormalized. The renormalized fermion loop is given by

− β0fαs

[

ln(−k2/µ2) + C
]

(2.16)

with a scheme-dependent constant C and β0f = NfT/(3π) the fermion contribution to

the one-loop β-function.6 In the MS scheme C = −5/3.
6Unless otherwise stated, αs denotes the strong coupling renormalized in the modified minimal
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正則化されたQCD型理論？

• ゲージ場作用をゲージ対称に変形する方向性 

• 随伴表現クォークなどを導入する方向性 

• 時空をコンパクト化する方向性

QCDをweak coupling領域で扱うために変形が必要

Double-trace deformation, et.al. Unsal(09)

QCD(adj.),  Z3-QCD,  et.al. Unsal(07)  Kouno, et.al. (12) 
Kanazawa, TM(14)  Iritani,Itou,TM(15)
Cherman(16), Sulejmanpasic(16)

R3 x S1,  T3 x S1,  et.al. Yamazaki, Yonekura (17)



◆細谷機構による非自明なPolyakov-loop holonomy in S^1

P = Tr (P exp[ig
�

C
A4dx4])
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Figure 3. Contour plots of V(Nc = 3, ND
f = 1) in (2.13) at m = 0 and ⇥ � {0, 0.248�, 0.280�,

0.326�, 0.400�, �}. Phase transitions occur at ⇥ ⌥ 0.248� and ⇥ ⌥ 0.326�, from the confining to
the split phase and then to the deconfined phase, respectively.

This phase is Z3-symmetric but breaks the SU(3) gauge symmetry down to U(1) ⇥ U(1).

At ⇥ ⌃ 0.248� there is a first-order phase transition to the vacuum with (q1, q2, q3) =

(0,±�,⌅�), (±2�/3,⌅�/3,⌅�/3) and their permutations, for which

�PF � = �1

3
,

ei�/3

3
, and

e�i�/3

3
. (2.15)

This is the so-called “split phase” [37, 74] in which SU(3) gauge symmetry is broken to

SU(2) ⇥ U(1) since only two of the eigenvalues of the holonomy are degenerate. The Z3

symmetry is also broken by �PF �  = 0. Finally, at ⇥ ⌃ 0.326� there is another first-order

phase transition to the vacuum with (q1, q2, q3) = (0, 0, 0) and (±2�/3,±2�/3,±2�/3),

with the Polyakov loop VEV

�PF � = 1, e2i�/3, and e�2i�/3 . (2.16)

This is the usual deconfined phase. The overall center phase structure for m = 0 is

summarized below. We note that a similar phase structure has been observed in pure

Yang-Mills theory with deformation [107].

(Nc, ND
f ) = (3, 1) Phase �PF � Gauge sym.

0 ⇧ ⇥ < 0.248� Confined 0 U(1)⇥U(1)

0.248� < ⇥ < 0.326� Split �1/3, e±i�/3/3 SU(2)⇥U(1)

0.326� < ⇥ ⇧ � Deconfined 1, e±i2�/3 SU(3)

(2.17)

For m  = 0, the potential (2.13) depends on Lm. The phase structure, depicted in

Figure 2 (right), is analogous to the SU(2) case as a whole. It is intriguing that the con-

fined and the deconfined phases are always separated by the split phase, although no such
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cf.) SU(3)

QCD(adj.) on R × S3 1
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非閉じ込め

中心対称 
ヒッグス

中心対称 
閉じ込め

Schematic phase diagam

cf.)SU(2)

Cossu, D’Elia (08)   
Cossu, Hatanaka, Hosotani, Noaki(13)
Kashiwa, TM (13)
TM, Kanazawa (14)�
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SU(2) SU(2)

U(1)

U(1)^(Nc-1) 中心対称相の出現



・ZN twisted B.C.を課すことと等価 

・BPS解は1/N target spaceへのマップに対応

9

at x1 → +∞. The configurations ωL (ω∗
L) and ωR (ω∗

R) can be regarded as a domain wall

and anti-domain wall, respectively. A domain wall at each constant x2 slice corresponds to

a path connecting the north pole m = (0, 0,+1) and the south pole m = (0, 0,−1) in the

target space, as illustrated in Fig. 2(a). A U(1) modulus is localized on these domain walls

characterizing which point on the equator in the target space a domain wall passes through

[56]. This U(1) modulus is twisted along the domain wall to satisfy the boundary condition

at x2 = 0 and x2 = 1. When one changes a constant x2 slice from x2 = 0 to x2 = 1, a path

in the target space changes with sweeping a half of the sphere as the target space, as shown

in Fig.2(b) and (c). Therefore, these configurations give maps from the space R × S1 to a

half of the target space. BPS configurations ωL and ωR carry a half of the unit instanton

  

 

 






(a) (b) (c)

FIG. 2: (a) Domain wall, and (b) and (c) fractionalized instantons in the target space S2. (b)

corresponds to the configurations ωR and ω∗
L while (c) corresponds to the configurations ωL and

ω∗
R.

charge, Q = 1/2, while anti-BPS configurations ω∗
L and ω∗

R carry Q = −1/2. This fact also

can be understood by noting that the U(1) modulus is twisted half along the domain wall

[57, 60].

Fractionalized instantons can exist in the CPN−1 model too. The configuration (18) of

the CP 1 model can be generalized into the N -vector ω for the CPN−1 model with the ZN

twisted boundary condition in Eq. (13) as

ωL =
(

0, · · · , 0, 1,λeiθe+2πz/N , 0, · · ·
)T

, ωR =
(

0, · · · , 0, 1,λeiθe−2πz/N , 0, · · ·, 0
)T

.(19)

ex.) SU(2) case

P = diag[1, e2�i/N , e4�i/N , · · ·, e2�(N�1)i/N ] PN = 1(           )

Target space 
の半分

BPS解 :  1/N 分数インスタントン (Q=1/N)

U(1)相におけるソリトン解

��(SU(2)/U(1)) = �   �  Monopoles 

��(�) 

��(�) 

Instantons 

from: Bruckmann et al., hep-th/0309008  

Q=1
Q=1/2

Q=1
Q=1/3



Magnetic bionsによる閉じ込め

Consider the setup of Ref. [8]. In the small S1 (weak coupling) limit of SU(2) QCD(adj),
the holonomy of the spatial Wilson line along the S1 direction U(x) = Pei

R
dx4A4(x,x4) may be

regarded as a compact adjoint Higgs field. This field acquires a nontrivial (center symmetry
respecting) vacuum expectation value, U = Diag(eiπ/2, e−iπ/2), due to radiatively induced
one-loop Coleman-Weinberg potential. The photons and neutral fermions (Aµ,λI) parallel
to U remains massless to all orders in perturbation theory, and all the other modes acquire
masses and hence decouple from the infrared dynamics.

Nonperturbatively, there are topologically stable monopole configurations which are a
consequence of gauge symmetry breaking. Since the adjoint Higgs field is compact, other than
the Bogomol’nyi-Prasad-Sommerfield (BPS) monopole, there is also a KK monopole. The
existence of KK-monopoles, which are perhaps the most crucial ingredient in our discussion
of QCD(adj), was discovered in 1997, independently by Lee and Yi using D-branes in string
theory [9] and by Kraan and van Baal by using calorons configurations [10]. The magnetic

and topological charges
(∫

F,
∫

FF̃
)

of these monopoles are normalized as

BPS :(+1,+1
2 ), BPS : (−1,−1

2 ) KK :(−1,+1
2 ), KK : (+1,−1

2 ) (1.1)

where bar denotes antimonopoles.

In [8], we constructed the d = 3 dimensional long-distance theory for QCD(adj) formu-
lated on R3 × S1 by employing three tools: abelian duality, symmetries, and index theorem.
This strategy is, in essence, similar to the Seiberg-Witten construction of prepotential in
N = 2 SYM [4]. The unique lagrangian to order e−2S0 dictated by these considerations is

LdQCD =
1

2
(∂σ)2 − b e−2S0 cos 2σ + iψ̄Iγµ∂µψI + c e−S0 cos σ(det

I,J
ψIψJ + c.c.) (1.2)

where σ and ψI denote the dual photon and fermion. Dimensionless coordinates, measured
in units of compactification circumference L, are used. A detailed microscopic derivation of
this Lagrangian will be given in section 2. The mass gap for gauge bosons is manifest in this
lagrangian. The inverse of the mass gap is the characteristic size of the chromoelectric flux
tube, hence confinement is also manifest in dual formulation [8].

1.2 Microscopic derivation

In this work, we will derive the dual lagrangian 1.2 by summing over all non-perturbative
effects. Before doing so, note a simple but important feature of 1.2. It is clear that fermionic
interaction terms arise due to the monopole effects. Any monopole carries a net topological
charge. If massless fermions are present in the underlying theory, due to the index theorem,
a monopole must be associated with 2nf fermion zero-modes of one chirality and an anti-
monopole leads to 2nf zero-modes of the opposite chirality. Consequently, the terms involving
fermion zero-mode insertions are the sum of the monopole operators:

BPS : eiσ det
I,J

ψIψJ , KK : e−iσ det
I,J

ψIψJ ,

BPS : e−iσ det
I,J

ψ̄I ψ̄J , KK : eiσ det
I,J

ψ̄I ψ̄J , (1.3)
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= （磁荷,  インスタントン数）

BPS KK

BPS KK
(2,0) (−2, 0)

(1, 1/2) (−1, 1/2)

(−1, −1/2) (1, −1/2)

Figure 2: (Left)Magnetically and topologically charged monopoles carry compulsory fermion zero-
modes. Consequently, they cannot induce a bosonic potential for the dual photon. (Right) Topologi-
cally null, magnetically charged bions have no external fermionic legs. Hence, they induce the leading
bosonic potential, which implies mass for the dual photon and confinement. The figure is for SU(2)
with nf = 2. The combination of the BPS- KK monopoles (which is not depicted) is an instanton (or
caloron). It is present in confined phase, but is not the source of the dual photon mass term.

shift symmetry, cannot prohibit a mass term for the scalar σ. Clearly, a term e−S0 cos σ is
forbidden by Z2. But its square is an allowed operator. If fermions were not present,

e−S0 cos σ ∼ e−S0(eiσ + e−iσ) (2.18)

would be an allowed term as in the Polyakov’s discussion of the Georgi-Glashow model, and
would induce a mass term of order e−S0/2 for dual photon. However, because of the index
theorem 2.11, a monopole must come with fermion zero-modes, and a term such as eiσ cannot
appear on its own, but must appear in combination eiσ detI,J ψIψJ .

Symmetry principles also tell us that, at the e−2S0 order, we can write

[e−S0 cos σ]2 ∼ e−2S0(1 + 1 + e2iσ + e−2iσ) (2.19)

and this would generate a mass term for the dual photon, hence leading to confinement. We
wish to understand the dynamical origin of this potential.

Let us first forget about the issues about fermion zero-modes, and decide on the basis
of quantum numbers, which objects may contribute to the nonperturbative potential. Since
we know that, due to index theorem, such an object can not be a monopole, let us enlist
all possible pairs of monopoles, the magnetic and topological charges of constituents and
pairs, and the types of the long range Coulomb interactions, repulsive or attractive. In
nonsupersymmetric QCD(adj) with 2 ≤ nf ≤ 4, the list of all Coulomb interaction channels
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Fermion zero mode交換に基づくMagnetic bionの凝縮
による閉じ込め(massive dual photon)

Unsal(07)

cf.)SU(2)

BPS KK

BPS KK
(2,0) (−2, 0)

(1, 1/2) (−1, 1/2)

(−1, −1/2) (1, −1/2)

Figure 2: (Left)Magnetically and topologically charged monopoles carry compulsory fermion zero-
modes. Consequently, they cannot induce a bosonic potential for the dual photon. (Right) Topologi-
cally null, magnetically charged bions have no external fermionic legs. Hence, they induce the leading
bosonic potential, which implies mass for the dual photon and confinement. The figure is for SU(2)
with nf = 2. The combination of the BPS- KK monopoles (which is not depicted) is an instanton (or
caloron). It is present in confined phase, but is not the source of the dual photon mass term.

shift symmetry, cannot prohibit a mass term for the scalar σ. Clearly, a term e−S0 cos σ is
forbidden by Z2. But its square is an allowed operator. If fermions were not present,

e−S0 cos σ ∼ e−S0(eiσ + e−iσ) (2.18)

would be an allowed term as in the Polyakov’s discussion of the Georgi-Glashow model, and
would induce a mass term of order e−S0/2 for dual photon. However, because of the index
theorem 2.11, a monopole must come with fermion zero-modes, and a term such as eiσ cannot
appear on its own, but must appear in combination eiσ detI,J ψIψJ .

Symmetry principles also tell us that, at the e−2S0 order, we can write

[e−S0 cos σ]2 ∼ e−2S0(1 + 1 + e2iσ + e−2iσ) (2.19)

and this would generate a mass term for the dual photon, hence leading to confinement. We
wish to understand the dynamical origin of this potential.

Let us first forget about the issues about fermion zero-modes, and decide on the basis
of quantum numbers, which objects may contribute to the nonperturbative potential. Since
we know that, due to index theorem, such an object can not be a monopole, let us enlist
all possible pairs of monopoles, the magnetic and topological charges of constituents and
pairs, and the types of the long range Coulomb interactions, repulsive or attractive. In
nonsupersymmetric QCD(adj) with 2 ≤ nf ≤ 4, the list of all Coulomb interaction channels
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Magnetic bion凝縮 

閉じ込め



Neutral bionsと赤外リノーマロン

Consider the setup of Ref. [8]. In the small S1 (weak coupling) limit of SU(2) QCD(adj),
the holonomy of the spatial Wilson line along the S1 direction U(x) = Pei

R
dx4A4(x,x4) may be

regarded as a compact adjoint Higgs field. This field acquires a nontrivial (center symmetry
respecting) vacuum expectation value, U = Diag(eiπ/2, e−iπ/2), due to radiatively induced
one-loop Coleman-Weinberg potential. The photons and neutral fermions (Aµ,λI) parallel
to U remains massless to all orders in perturbation theory, and all the other modes acquire
masses and hence decouple from the infrared dynamics.

Nonperturbatively, there are topologically stable monopole configurations which are a
consequence of gauge symmetry breaking. Since the adjoint Higgs field is compact, other than
the Bogomol’nyi-Prasad-Sommerfield (BPS) monopole, there is also a KK monopole. The
existence of KK-monopoles, which are perhaps the most crucial ingredient in our discussion
of QCD(adj), was discovered in 1997, independently by Lee and Yi using D-branes in string
theory [9] and by Kraan and van Baal by using calorons configurations [10]. The magnetic

and topological charges
(∫

F,
∫

FF̃
)

of these monopoles are normalized as

BPS :(+1,+1
2 ), BPS : (−1,−1

2 ) KK :(−1,+1
2 ), KK : (+1,−1

2 ) (1.1)

where bar denotes antimonopoles.

In [8], we constructed the d = 3 dimensional long-distance theory for QCD(adj) formu-
lated on R3 × S1 by employing three tools: abelian duality, symmetries, and index theorem.
This strategy is, in essence, similar to the Seiberg-Witten construction of prepotential in
N = 2 SYM [4]. The unique lagrangian to order e−2S0 dictated by these considerations is

LdQCD =
1

2
(∂σ)2 − b e−2S0 cos 2σ + iψ̄Iγµ∂µψI + c e−S0 cos σ(det

I,J
ψIψJ + c.c.) (1.2)

where σ and ψI denote the dual photon and fermion. Dimensionless coordinates, measured
in units of compactification circumference L, are used. A detailed microscopic derivation of
this Lagrangian will be given in section 2. The mass gap for gauge bosons is manifest in this
lagrangian. The inverse of the mass gap is the characteristic size of the chromoelectric flux
tube, hence confinement is also manifest in dual formulation [8].

1.2 Microscopic derivation

In this work, we will derive the dual lagrangian 1.2 by summing over all non-perturbative
effects. Before doing so, note a simple but important feature of 1.2. It is clear that fermionic
interaction terms arise due to the monopole effects. Any monopole carries a net topological
charge. If massless fermions are present in the underlying theory, due to the index theorem,
a monopole must be associated with 2nf fermion zero-modes of one chirality and an anti-
monopole leads to 2nf zero-modes of the opposite chirality. Consequently, the terms involving
fermion zero-mode insertions are the sum of the monopole operators:

BPS : eiσ det
I,J

ψIψJ , KK : e−iσ det
I,J

ψIψJ ,

BPS : e−iσ det
I,J

ψ̄I ψ̄J , KK : eiσ det
I,J

ψ̄I ψ̄J , (1.3)
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BPS KK

BPS KK
(2,0) (−2, 0)

(1, 1/2) (−1, 1/2)

(−1, −1/2) (1, −1/2)

Figure 2: (Left)Magnetically and topologically charged monopoles carry compulsory fermion zero-
modes. Consequently, they cannot induce a bosonic potential for the dual photon. (Right) Topologi-
cally null, magnetically charged bions have no external fermionic legs. Hence, they induce the leading
bosonic potential, which implies mass for the dual photon and confinement. The figure is for SU(2)
with nf = 2. The combination of the BPS- KK monopoles (which is not depicted) is an instanton (or
caloron). It is present in confined phase, but is not the source of the dual photon mass term.

shift symmetry, cannot prohibit a mass term for the scalar σ. Clearly, a term e−S0 cos σ is
forbidden by Z2. But its square is an allowed operator. If fermions were not present,

e−S0 cos σ ∼ e−S0(eiσ + e−iσ) (2.18)

would be an allowed term as in the Polyakov’s discussion of the Georgi-Glashow model, and
would induce a mass term of order e−S0/2 for dual photon. However, because of the index
theorem 2.11, a monopole must come with fermion zero-modes, and a term such as eiσ cannot
appear on its own, but must appear in combination eiσ detI,J ψIψJ .

Symmetry principles also tell us that, at the e−2S0 order, we can write

[e−S0 cos σ]2 ∼ e−2S0(1 + 1 + e2iσ + e−2iσ) (2.19)

and this would generate a mass term for the dual photon, hence leading to confinement. We
wish to understand the dynamical origin of this potential.

Let us first forget about the issues about fermion zero-modes, and decide on the basis
of quantum numbers, which objects may contribute to the nonperturbative potential. Since
we know that, due to index theorem, such an object can not be a monopole, let us enlist
all possible pairs of monopoles, the magnetic and topological charges of constituents and
pairs, and the types of the long range Coulomb interactions, repulsive or attractive. In
nonsupersymmetric QCD(adj) with 2 ≤ nf ≤ 4, the list of all Coulomb interaction channels
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Neutral bion(もしくは対応する複素解)の寄与は不定虚部
を持ち，リノーマロン不定虚部を相殺すると予想出来る

Argyres-Unsal (12)

cf.)SU(2)

Neutral bion 
=         　 

IR-renormalon ?

= （磁荷,  インスタントン数）



問題は弱結合-強結合閉じ込め相の連続性があるか否か
(2つの相を分けるorder parameterは存在しない)
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QCD(adj)での結果はQCDに繋がるか？
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問題は弱結合-強結合閉じ込め相の連続性があるか否か
(2つの相を分けるorder parameterは存在しない)

�

�

� �

� �������

���

?

QCD(adj)での結果はQCDに繋がるか？

強結合 
閉じ込め

非閉じ込め

弱結合 
閉じ込め



• 複素解の寄与まで含めたトランス級数によって，
量子論の厳密結果を再現

• QCDを含むリノーマロンを持つ理論においては，
defomed理論とのcontinuityが鍵

まとめ

• 量子力学，2次元場の量子論，厳密に解ける理論な
どにおいては，リサージェンス構造を確認

数学の分野も巻き込んだ今後の進展が期待される



昔からのインスタントン展開と何が違うの？

• トランス級数にリサージェンス理論による数学的
裏付けが与えられた．

• 分数インスタントンの複合状態(Bion)もしくはそれ
に対応する複素解がリノーマロンを説明する可能性
が出てきた．

• 複素古典解とThimble分解という観点から経路積分
を理解する(定義する)可能性が得られた．



何が出来るのか？

• 格子理論と異なる見方に基づいた場の量子論・経
路積分の非摂動的定式化の可能性

• 非超対称場の量子論であっても複素古典解を見つけ
ることで，非摂動解析を近似的に実行出来る可能性．

• 複素古典解の寄与を少しでも取り入れることで，新
しい非摂動的近似法として使える

Kontsevich(14)

Dolan, Burns ('80)
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