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1. Introduction
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Ultra-relativistic heavy-ion collisions and the Bjorken expansion
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Heavy-ion collision is an overwhelmingly complicated system
» Assumption that hydrodynamics is applicable in the collision center
Bjorken expansion is a simple and characteristic hydrodynamic solution

» An approximate boost invariance along the beam axis
z
w=2 (<)

Bjorken expansion is a one-dimensional Hubble expansion



Hydrodynamics with noise
Kovtun-Yaffe (03), Gavin-AbdelAziz (06), Kovtun-Moore-Romatschke (11), Kapusta-Muller-Stephanov (12),

Young-Kapusa-Gale-Jeon-Schenke (15), Murase-Hirano (16), Yan-Gronqvist (16), Gavin-Moschelli-Zin (16),

YA-Mazeliauskas-Teaney (17), - - -
Thermal fluctuations — for example Landau-Lifshitz
Nyg(t,k) = {g'(t, k)g”" (t,k)) = (e + p)T6"

TV
momentum, g* = T

equilibrium

» Conceptually important (required by the FDT)
» Larger in smaller systems: Nparticle ~ 10000 in the heavy-ions

» Essential near a critical point

How do thermal fluctuations evolve during a Bjorken expansion?
How do thermal fluctuations change the Bjorken expansion?
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Kinetic regime of hydrodynamic fluctuations — a new scale £,
1. For hydrodynamic fluctuations with wavenumber k:
» Equilibration rate ~ ~, k? (v =n/(e+Dp))
» Expansion rate w ~ 1/7 for a Bjorken expansion
2. Compete at a critical scale:

ks ~ | —

3. Derivative expansion controlled by € = y,w < 1

w w
Cs cs\/€
—

k4 is hard !

1
1
1 1

1
CsT < k*NCST\/E <

llnfp

We derive an effective “Hydro-kinetic theory” for the kinetic regime k.,



Renormalization in hydrodynamics with noise

1. Modes above the cutoff contribute to local parameters, e.g. po, (o
2. Modes below the cutoff are dynamical
3. “Usual” p and ( are defined in the thermodynamic limit a — oo

L//’)

al

We will show how the cut-off dependence arises in Hydro-kinetic theory
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Brief review of our results for conformal fluid (¢? = 1/3,¢ = 0)

1. Renormalization based on Hydro-kinetic theory
» Reproduced previous diagrammatic calculation on a trivial background
Kovtun-Yaffe (03), Kovtun-Moore-Romatschke (11)

AT AT 17AT e + po
p pO( ) + 671'2 ) € 60( ) + 272’ n 770( ) + 1207_[_2 0

2. Fractional order correction to the Bjorken expansion (long-time tail)

4n 3/2 8
T = p — —1 4+1.08318 7T ) + (M = 7) g o
~~~ 37' 7[-77]7- 97_
ideal ~
Istorder 1 5th order (long-time tail) 2nd order
Hard ~ k, = \F

" W = (e 4+ plutu : '
""""""""""" : ‘J_f :
Soft ~ w : :

sound propagator

What about nonconformal fluid from Hydro-kinetic theory?



Renormalization for nonconformal fluid

1. Bulk viscosity renormalization:
» Renormalization proportional to conformal breaking C?n

TA [CZ — C2
T) = ((T;A) + — +4
3T dc?
CL(T) = 1+7d;f —32, Cy(T)=1-3c

2. Pressure renormalization:

Talc?O TA3
p(T) = po(T5A) + (1 tSar ) oy

3. Energy density renormalization:
TA3
272

Let us see how these results are obtained by Hydro-kinetic theory

e(T) = eo(T;A) +
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2. Hydrodynamic fluctuations in the equilibrium
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Hydro-kinetic theory: An analogy with Brownian motion

1. Langevin equation

P — et £ (W) = T3~ 1)

drag noise

2. Calculate how (p*(t)) evolves through Langevin process

%(19) = =27 [(p?) - MT]

TV
equilibration

Follow the same steps for hydrodynamic fluctuations
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Hydro-Langevin equation in equilibrium

{

1. Linearized fluctuations: e = ey + de, § = (e + po)V

o(t, E) = (csde, g)

2. Hydro-Langevin equation for ¢(t, k)

—$t.k)= Ly + D$ + ¢
~— ~— ~—
ideal ~ icsk viscous ~ 'y]gQ noise
3. Fluctuation-dissipation theorem
(€t R)E(H K')) = 2T (eo + po) DS (k — K)8(t —t')

The Hydro-Langevin equation is similar to the Brownian motion
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The matrices in the equilibrium

0 coki , (0 0
L= . D=k L
cskj 0 0 ’}/CO(SZJ + %705Z~j
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Hydro-kinetic equations for the hydro fluctuations

1. Four eigenmodes of L: ¢, ¢, ¢1,, ¢1,

left moving sound ¢_  right moving sound ¢,  transverse modes ¢

~~

A = —csk Ay = csk Ar =0
2. Analyze the two-point functions — e.g.

Ni (6, ) = (¢4 (t, k)" (8, k)

» Neglect off-diagonal components (rotating wave approximation)

3. Hydro-kinetic equations for N4
Niyj—— = —ok® [Ny y—— = T(eo + po)]

NT1T1/T2T2 = _27770]{;2 [NTlTl/TgTQ - T(eo +p0)]

equilibration

The Hydro-kinetic equations describe equilibration (FDT)
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Nonlinear contribution to energy-momentum tensor

1. Equilibrium fluctuations — using N = T'(eo + po)
(9" ()9 ())eq = T(e0 + p0)76(Z — 7)
2. Nonlinear contributions (for conformal fluid)

oy _ zymy oo (979" )eq
<T >eq =po + (60 +p0)<u u >eq =po+
€o + Do

3. Renormalization (for conformal fluid)

A 3
p=po(A)+T/ (g:)g,

= Pphys, independent of A

Background pressure and energy density need to be renormalized
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3. Hydrodynamic fluctuations under an external forcing
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Expanding systems

7#4 e
1. Analyze in a comoving frame vg =0

2. Examples:
» Tensor/scalar metric perturbations (h(t) = he=™*! |h| < 1)

ds® = —dt® + (1 + h(t))dz® + (1 + h(t))dy* + (1 — 2h(t))d2"
Vds? = —dt* + (14 h(t))da? + (1 + h(t))dy® + (1 + h(t))d2?

» Bjorken expansion
ds®> = —dr? + dxi + 7'2dn2

What is the effect of expansions for hydrodynamic fluctuations?
16 /25



Hydro-Langevin equation in an expanding system

1. Hydro-Langevin equation for ¢ = (csde, g)

—b(t, k) =iLd+ Dop+¢ + Po
~— ~—— ~—

ideal viscous + noise  expansion

- . R 1
(L R)EW, K)) = 2To(eq + po)DI(E — K)o(t — ') —
N
P = h diag (2 (1 +co+ > Ty ,2,2,2

2. Repeat the same steps with the equilibrium case

2.1 Find 4 eigenmodes of L: ¢4, ¢, ¢1y, P13,
2.2 Kinetic equation for each mode Naa =V ~1{(¢a0%)
2.3 Nonlinear fluctuations in T*¥

The expanding background perturbs the fluctuations by P
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Hydro-kinetic equation in a scalar metric perturbation

1. Uniform background solution is time-dependent

3h(t)
2

(€0 + Do)

2. Hydro-kinetic equations for N, = N, ,__ and Np = Np 1, /1,1
» The scalar gravitational field does not distinguish 77 and T5

. h 3Tp dc?
NL:_7C0k2 [NL_Neq(t)] 3c 20+ 0250 + 7 NL
2 dTy
Nr = —27,0k? [N — Neg(t)] = 4hNp
equilibration external forcing
T
Neg(t) = To(eo + po)
V9

Equilibration and disturbance balance at k ~ k. ~ \/w/~
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Nonlinear contribution to TH

1. Solve the kinetic equation in the linear order of h:

iwh(w)
N = Neg(t) + 0N (t), ON(w)~ ————
eq(t) + N (2), (w) “iw + 7ok?
2. Compute fluctuation contribution to T*" in the linear order of h:
)
Tt €o + (g°)
€0 + Po
y 1—h 3Ty dc?
T = 30 iy~ S+ () + TSR] o
—_——— 0+ Po 2 diy

ideal
viscous

fluctuations Tﬂuct

3. Contribution from the fluctuations:
A
@ = Ve / PrVe+2NT] L (o) = VG [ PR

J Neg o< A3 <5 po, [SN o< hA ¢ ¢o?

Nonlinear fluctuations require renormalization of bulk viscosity and ...
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Absorb divergences in T" — Temperature shift

1. T does not have a counter term to absorb a divergence o hA

3
T" = eo(To; A) + TOA

+O(hA) +

2. Temperature depends on the cutoff
» To account for off-equilibrium fluctuations near the cutoff

To(t; A) =T(t) + AT(t; A)

3. Express T% in terms of T

TA3
T ~ eo(T; A) t52 + %AT + O(hA) +
= ep;;s(T) =0, by which X.T o hA fixed

T™ is made finite by the temperature shift AT oc A(9 - u)
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Absorb divergences in 7% — Renormalization

1. Temperature shift in pg:

d
po(To; A) ~ po(T; A) + AT

dTy
N
= Ap x hA
2. Compute isotropic stress:
T — 3(1 — W pa(T, 9 i i i i
= 3(1 = h)po(To) — §C0 T Tfuer 5 Lfuce = Neq
~—_——— —— N
) —— .
ideal viscous fluctuations oc (1 — h)A3

9 . )
=3(1 — Rh)po(T) + T, —§C0h +3(1 — h)Ap+ T5n

~ (1= h)(po + #A?) ~ (Co + #A) + long-time tail

Temperature shift affects how bulk viscosity is renormalized

+ T,
~—~

o hA
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Renormalization of bulk viscosity, pressure, and energy density

1. Bulk viscosity renormalization:
» Renormalization proportional to conformal breaking C?n

c.f. Diagrammatic computation for cold Fermi gas [Martinez-Schaefer (17)]

TA

0420 Cgo
1872 4

TCO 270

¢(T) = G(T; A) +

3T dc?
2 dT

Ce(T) =1+ —3c2, Cy(T)=1- 3¢

2. Pressure renormalization:

p(T) = po(T; A) + (1 +

Tdcso TA3
2 dT

3. Energy density renormalization:

TA3
G(T) = GO(T A) + ?

Bulk viscosity renormalization is derived for the first time!
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Bulk viscosity from thermal fluctuations

1. Bulk viscosity is finite even if (y(A*) = 0 at some scale A*

4

2
- 3c§> +2(1 — 3c2)?

s n s/T% 18x2

¢ s AT 1 |3 ) 3T dc;
2 dT

—_

2. Lattice EoS by Hot QCD Collaboration

0.08

A =27 4T
n/s=1/(4r)

0.07
0.06
0.05
0.04

/s

0.03
0.02
0.01

n :
250 300 350 400
T MeV

0 I
150 200

Bulk viscosity is enhanced near transition temperature 7' ~ 150MeV
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4. Summary & Outlook
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Hydro-kinetic equation for k., advantageous in expanding systems

v

Universal renormalization of energy density, pressure, and viscosities
3/2 _—3/2
)

v

Background-dependent long-time tails oc w?/“, 7

v

Bulk viscosity enhanced due to scale symmetry breaking

¢(T) = Go(T; A)

37 dc? ® eo+ po
L4+ — 50—38) —
TA2 ( 2 dT ) Co+ A
187 2 €0 + po
4(1—-3c
+ ( CsO) 27)0

+

> Application to the critical dynamiCS [YA-Teaney-Yan-Yin, in preparation]
» Kibble-Zurek scaling for critical fluctuations in a Bjorken expansion
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