Holographic Schwinger Effect and Chiral condensate in SYM Theory

Masafumi Ishihara

Tohoku U. AIMR

Collaborator:

Kazuo Ghoroku Fukuoka Inst. Tech.

K.Ghoroku and M. I. arXiv: 1604.05025[hep-th]

Holographic Schwinger effect

D7-brane embedding

D7-brane embedding $w(\rho)$

$$w(\rho) = m_q + \frac{c}{\rho^2} + \cdots$$

Current quark mass: m_q

VEV of chiral condensate: $c \equiv -\langle \overline{\psi} \psi \rangle > 0$

Production rate

Electric field *E* $S_{D7} = -\tau_7 \int d^8 \xi \sqrt{-det(g_{ab} + F_{ab})}$ $A_x = -Et$

The production rate Γ of quark-antiquark pair $\Gamma \equiv \frac{\Gamma}{2}$

$$arGamma \equiv rac{ImL_{D7}}{2\pi^2 au_7}$$

$$\Gamma$$
 decreases with $m{c}\equiv-\langle\overline{m{\psi}}m{\psi}
angle$

Effective quark mass increases with *c* and it becomes difficult to be pair created.

Effective quark mass and NJL model

We derive the effective quark mass $\, m_q^{eff} \,$ from arGamma.

The effective quark mass agrees with NJL model for small c

$$L_{NJL} = \overline{\Psi} (i\gamma^{\mu}\partial_{\mu} - m_q)\Psi + g_s(\overline{\Psi}\Psi)^2 + \cdots, \qquad g_s = 0.74/E$$