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Returning to Eq. (83), we solve the equation, and de-
termine the transverse momentum correlation function
(in the same rapidity slice) at an intermediate time ⌧ 0

which is large compared to ⌧
0

but much much less than
the final time ⌧ , ⌧

0

⌧ ⌧ 0 ⌧ ⌧

⌧ 02
D
gi?(⌧

0, ⌘, ~x?)g
j

?(⌧
0, ⌘, ~y?)

E
=

Z
dd2k?
(2⇡)3

ei
~

k?·(~x?�~y?) ⌧ 02N ij(⌧ 0,) . (86)

Implementing these steps we find
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This has the same form as the initial conditions described
in Sect. III A, and fluctuations at the earliest moments
simply increase the variance of long range transverse mo-
mentum fluctuations by a constant amount
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reproducing Eq. (75). In a sense, this constant shift
simply finalizes the thermalization process described at
the start of Sect. III A. The correction ��gg

⌧0
scales as

⌧
�1/3

0

and is therefore small compared to the first term
in Eq. (75) if ⌧

0

is large compared to a typical thermal-
ization time.

IV. RESULTS AND DISCUSSION

In this paper we determined a set of kinetic equations
which describe the evolution of hydrodynamic fluctua-
tions during a Bjorken expansion. We used these equa-
tions to find the first fractional power correction to the
longitudinal pressure, / 1/(⌧T )3/2, at late times. The
evolution equations can be extended to much more gen-
eral flows, and ultimately coupled to existing hydrody-
namic codes.

The kinetic equations for hydrodynamic fluctuations
are a WKB (or rotating wave) type approximation of the
full stochastic hydrodynamic evolution equations. This
approximation is justified because the relevant hydrody-
namic modes have wavenumbers of order

k⇤ ⇠
r

e+ p

⌘⌧
, (89)

which is large compared to the inverse expansion rate,
1/⌧ . For example, the kinetic equation for the sound

mode with wavenumber ~K = (~k?,/⌧) interacting with

the Bjorken background takes the form of a relaxation
type equation
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N
++

(⌧,k) are short wavelength (symmetrized) two point
functions of conserved stress tensor components, �

+

⌘
(c

s

�e + K̂ · ~G)/
p
2 in an evolving Bjorken hydrody-

namic background (see Sect. III and Eq. (65) for the
remaining modes). At high wavenumbers K � k⇤, the
distribution function N

++

reaches its equilibrium form
T (e

0

+ p
0

)/⌧ , up to first viscous corrections which may
be found by solving Eq. (90) order by order at large K/k⇤
(see Eq. (66a)). This asymptotic form is responsible for
the renormalization of the pressure and shear viscosity.
For wavenumbers of order k⇤ the hydrodynamic fluctu-
ations are not in equilibrium at all, but reach a non-
equilibrium steady state at late times. A graph of this
non-equilibrium steady state is given in Fig. 2.

The deviation of hydrodynamic fluctuations from equi-
librium has consequences for the evolution of the system.
Indeed, the longitudinal pressure ⌧2T ⌘⌘ receives a cor-
rection from the unequilibrated modes
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where we have repeated Eq. (74a) for convenience. The
correction to the pressure ⇠T/(�

⌘

⌧)3/2 is of order ⇠Tk3⇤,
reflecting the number of modes of order k⇤ and the energy
per mode, 1

2

T . In contrast to all previous analyses of
long-time tails [21, 25], the hydrodynamic fluctuations in
the expanding case are not close to equilibrium, and a
loop expansion around equilibrium is not an appropriate
approximation scheme.

Formally, the noise correction is lower order than the
correction due to second order hydrodynamics, which is
proportional to a particular combination of second or-
der parameters, �

1

� ⌘⌧
⇡

. To quantify the importance
of thermal fluctuations in practice, we take representa-
tive numbers for the entropy from the lattice [31, 32],
estimates for the second order hydrodynamic coe�cients
based on weakly and strongly coupled plasmas [4, 28, 33],
and an estimate for ⌧T at ⌧ ⇠ 3.5 fm based on hydrody-
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