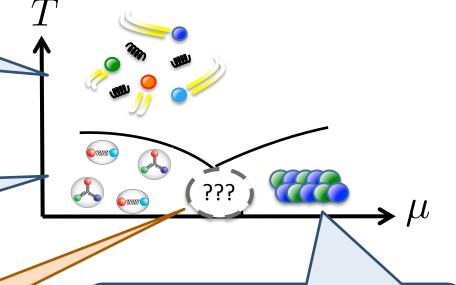

## 

名古屋大学 末永 大輝 原田正康

### 1. Introduction

#### QCD phase diagram




#### 1. Introduction

#### QCD phase diagram

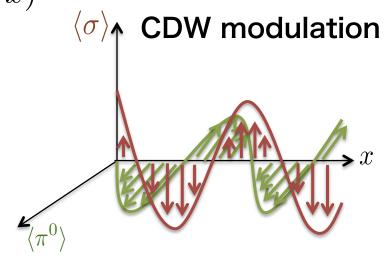
- Quark Gluon Plasma
- Chiral restored phase

- Quarks are confined
- Chiral broken phase

Inhomogeneous chiral broken phase (!?)



- Color superconductivity (?)
- Chiral restored phase (?)


### 2. Chiral Density Wave phase

#### Chiral Density Wave (CDW)

- CDW is one of the inhomogeneous chiral broken phase
- VEV of Chiral field  $M=\sigma+i\tau^a\pi^a$  is expressed as

$$\langle M \rangle = \phi \cos(2fx) + i\phi \tau^3 \sin(2fx)$$

- Neutral pseudo-scalar can condense
- $\phi$  measures the magnitude of chiral condensate



# 3. Heavy Quarks

• Heavy quarks have large masses compared with QCD scale  $\Lambda_{\rm QCD}$  , then magnetic gluon does not change the spin of heavy quarks:

$$\mathcal{L} = \bar{\psi}(i\gamma^{\mu}D_{\mu} - M_{Q})\psi$$
 
$$= \bar{\psi}_{v}(\underline{iv\cdot D})\psi_{v} + O(1/M_{Q}) \text{ spin does not flip!}$$
 
$$\text{no } \gamma \text{ matrices !}$$
 where 
$$\psi_{v} = \mathrm{e}^{iM_{Q}v\cdot x}\frac{1+\gamma^{\mu}v_{\mu}}{2}\psi$$
 
$$\overline{\psi}_{v}$$
 
$$g_{s}v_{\mu}$$
 
$$\psi_{v}$$

Spin-up state and spin-down state is independent and equivalent

( Heavy Quark Symmtery )

## 4. Our study

 Heavy mesons can be good probes to explore the nuclear matter!



• We calculated the dispersion relations for  $\bar{D}$  mesons!