Search for critical point in µ≠0 density QCD with many flavor approach

Ryo Iwami (Niigata Univ.)

In collaborete with

Norikazu Yamada(KEK/GUAS)、Shinji Ejiri(Niigata Univ.)

Research of $\mu \neq 0$ QCD phase structure w/ LQCD

- Columbia plot
 - Quark mass (m_{ud}, m_s) dep. of the order of chiral PT
 - the order is crossover @ Physical mass : $m_{ud} \simeq 1 \text{MeV}$, $m_s \simeq 100 \text{MeV}$ @ $\mu = 0$
 - There are the regions of 1st PT in light and heavy quark mass region @ $\mu\text{=}0$
- μ dependence of the boundary of 1st PT
 - If the boundary spreads out as increasing μ ,

we can find the QCD critical point in low μ region

Many flavour approach

- We study the system where 2 light quarks and N_f heavy quarks exist.
- It is known that 1^{st} order region is wider as increasing N_f

S. Ejiri, N. Yamada, Phys. Rev. Lett. 110, 172001 (2013)

- 1. For large N_f , we can search the boundary of 1st PT.
- 2. For large N_f , we can determine critical point where

the 1st order transition terminated relatively easily.

Many flavour approach

- We study the system where 2 light quarks and N_f heavy quarks exist.
- It is known that 1^{st} order region is wider as increasing N_f

S. Ejiri, N. Yamada, Phys. Rev. Lett. 110, 172001 (2013)

1. For large N_f , we can search the boundary of 1st PT.

2. For large N_{f} , we can determine critical point where

the 1st order transition terminated relatively easily.

Many flavour approach

- We study the system where 2 light quarks and N_f heavy quarks exist.
- It is known that 1^{st} order region is wider as increasing N_f

S. Ejiri, N. Yamada, Phys. Rev. Lett. 110, 172001 (2013)

- 1. For large N_f , we can search the boundary of 1st PT.
- 2. For large N_f , we can determine critical point where

the 1st order transition terminated relatively easily.

Result

പ്

- 1. 1st order region becomes wider as increasing (μ_l/T , μ_h/T)
- 2. Especially, 1st order region is wider rapidly at large μ_h/T
- 3. In high heavy quark density region ($\mu_h/T > 5.0$), there is 1st order PT in (2+1) QCD in valid region of HPE (m_s : so heavy).

I'll talk about more details in my poster presentation. Please come and listen to my presentation!!

Result

പ്

- 1. 1st order region becomes wider as increasing (μ_l/T , μ_h/T)
- 2. Especially, 1st order region is wider rapidly at large μ_h/T
- 3. In high heavy quark density region ($\mu_h/T > 5.0$), there is 1st order PT in (2+1) QCD in valid region of HPE (m_s : so heavy).

I'll talk about more details in my poster presentation. Please come and listen to my presentation!!