格子QCDによる
空間相関から迫る
中間子熱変化と壊れた対称性の回復

前澤 祐 (YITP, Kyoto University)

in collaboration with

Frithjof Karsch (Universität Bielefeld, Brookhaven National Lab.)
Swagato Mukherjee (Brookhaven National Lab.)
Peter Petreczky (Brookhaven National Lab.)

熱場の量子論とその応用、2015年8月31日--9月2日
Introduction

Thermal fluctuation in QCD

Modifications of hadrons
- sequential melting pattern of quarkonium and open-flavor mesons
 - e.g. J/ψ suppression
 - Matsui and Satz (1986)

Restorations of broken symmetries
- restored pattern of chiral and $U_A(1)$ symmetries
 - the nature of phase transition
 - Pisarski and Wilczek (1984)

Theoretical understanding in lattice QCD simulations from spatial correlation functions

Previous: strange-charm

This work: including up/down at widely T range

PRD91 (2015) 5, 054503
Hadronic excitation on Lattice

Temporal correlation function:
\[G^T(\tau, T) = \int d^3x \langle J^\dagger_H(0, 0) J_H(\tau, x) \rangle \xrightarrow{\tau \to \infty} A e^{-m_0 \tau} \]
...difficult due to the limitation \(\tau < 1/T \)

Spatial correlation function:
\[G^S(z, T) = \int_0^{1/T} d\tau \int dx dy \langle J^\dagger_H(0, 0) J_H(\tau, x) \rangle \xrightarrow{z \to \infty} A e^{-M(T)z} \]
\(M(T) \): screening mass

No limitation to spatial direction: more sensitive to in-medium modification
Hadronic excitation on Lattice

Temporal correlation function:

\[G^T(\tau, T) = \int d^3x \langle J^\dagger_H(0, 0) J_H(\tau, x) \rangle \xrightarrow{\tau \to \infty} A e^{-m_0 \tau} \]

...difficult due to the limitation \(\tau < 1/T \)

Spatial correlation function:

\[G^S(z, T) = \int_0^{1/T} d\tau \int dx dy \langle J^\dagger_H(0, 0) J_H(\tau, x) \rangle \xrightarrow{z \to \infty} A e^{-M(T)z} \]

\(M(T) \): screening mass

No limitation to spatial direction: more sensitive to in-medium modification

Spectral function

\[G^T(\tau, T) = \int_0^\infty d\omega \frac{\cosh(\omega(\tau - 1/2T))}{\sinh(\omega/2T)} \sigma(\omega, T) \]

\(\sigma(\omega, T) \) e.g.) reconstruction of \(\sigma \): MEM

\[G^S(z, T) = \int_0^\infty \frac{2d\omega}{\omega} \int_{-\infty}^{\infty} dp_z e^{ip_z z} \sigma(\omega, p_z, T) \]

No \(T \) dependence in Kernel: direct probe of thermal modification of \(\sigma \)

\[G^S(z, T)/G^S(z, T = 0) \]
Hadronic excitation on Lattice

Parity partner of meson states

Vector (vector and axial-vector)
\[
\begin{align*}
\bar{\psi} \gamma_i \psi & \quad 1^+ \\
\bar{\psi} \gamma_i \gamma_5 \psi & \quad 1^- \\
& \quad M_V(T)
\end{align*}
\]

Scalar (pseudo-scalar and scalar)
\[
\begin{align*}
\bar{\psi} \gamma_5 \psi & \quad 0^+ \\
\bar{\psi} \psi & \quad 0^- \\
& \quad M_S(T)
\end{align*}
\]

Degeneracy of parity partners: indicator of symmetry restorations
Hadronic excitation on Lattice

Parity partner of meson states

Vector (vector and axial-vector)

\[
\psi \gamma_i \psi \\
\psi \gamma_5 \psi \\
M_V(T)
\]

Scalar (pseudo-scalar and scalar)

\[
\psi \gamma_5 \psi \\
\psi \psi \\
M_S(T)
\]

Degeneracy of parity partners: **indicator of symmetry restorations**

Behavior in limiting cases:

At low \(T \), bound state: \(M(T) \sim m_0 \) pole mass at \(T=0 \)

\[
\sigma(\omega, 0, 0, p_z, T) \sim \delta(\omega^2 - p_z^2 - m_0^2)
\]

At \(T \sim T_C \), in-medium modification and/or dissolution
degeneracy of parity partner states

At \(T \to \infty \), free quark-antiquark pair:

\[
M \to 2\sqrt{m_q^2 + (\pi T)^2}
\]

with the lowest Matsubara frequency
Lattice simulations

- Setup in HISQ
- Modifications of Mesons
- Restorations of broken symmetries
Highly Improved Staggered Quark

Reduction of taste violation
Control of cutoff effects
Bazavov et al. `11, Hot-QCD `11, `14

Lattice parameters
- 2+1 flavor QCD
 (charm quenched)
- m_s: physical, $m_l/m_s = 1/20$
 ($m_\pi \sim 160$ MeV, $m_K \sim 504$ MeV)
- $N_\tau = 8$ ($T = 110—207$ MeV)
 10 ($T = 139—166$ MeV)
 12 ($T = 149—400$ MeV)
 keeping $N_s/N_\tau = 4$
- $32^4–48^3 \times 64$ at $T = 0$
- scale: f_k input
- calculating quark-line connected part of meson correlators

Mesons contents

<table>
<thead>
<tr>
<th>Γ</th>
<th>J^P</th>
<th>$u\bar{d}$</th>
<th>$u\bar{s}$</th>
<th>$u\bar{c}$</th>
<th>$s\bar{s}$</th>
<th>$s\bar{c}$</th>
<th>$c\bar{c}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_5</td>
<td>0$^-$</td>
<td>π</td>
<td>K</td>
<td>D</td>
<td>$(\eta_{s\bar{s}})$</td>
<td>D_s</td>
<td>η_c</td>
</tr>
<tr>
<td>1</td>
<td>0$^+$</td>
<td>K_0^*</td>
<td>D_0^*</td>
<td>$-$</td>
<td>D_{s0}^*</td>
<td>χ_{c0}</td>
<td></td>
</tr>
<tr>
<td>γ_i</td>
<td>1$^-$</td>
<td>ρ</td>
<td>K^*</td>
<td>D^*</td>
<td>ϕ</td>
<td>D_s^*</td>
<td>J/ψ</td>
</tr>
<tr>
<td>$\gamma_i\gamma_5$</td>
<td>1$^+$</td>
<td>K_1</td>
<td>D_1</td>
<td>$f_1(1420)$</td>
<td>D_{s1}</td>
<td>χ_{c1}</td>
<td></td>
</tr>
</tbody>
</table>
Reduction of taste violation
Control of cutoff effects

Lattice parameters
- 2+1 flavor QCD (charm quenched)
- m_s: physical, $m_f/m_s = 1/20$

Mesons contents

<table>
<thead>
<tr>
<th>Γ</th>
<th>J^P</th>
<th>ud</th>
<th>$u\bar{s}$</th>
<th>$u\bar{c}$</th>
<th>$s\bar{s}$</th>
<th>$s\bar{c}$</th>
<th>$c\bar{c}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_5</td>
<td>0^-</td>
<td>π</td>
<td>K</td>
<td>D</td>
<td>$(\eta_{s\bar{s}})$</td>
<td>D_s</td>
<td>η_c</td>
</tr>
<tr>
<td>1</td>
<td>0^+</td>
<td>K_0^*</td>
<td>D_0^*</td>
<td>D_{s0}^*</td>
<td>X_{c0}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ_i</td>
<td>1^-</td>
<td>ρ</td>
<td>K^*</td>
<td>D^*</td>
<td>ϕ</td>
<td>D_s^*</td>
<td>J/ψ</td>
</tr>
<tr>
<td>$\gamma_i\gamma_5$</td>
<td>1^+</td>
<td>K_1</td>
<td>D_1</td>
<td>$f_1(1420)$</td>
<td>D_{s1}</td>
<td>X_{c1}</td>
<td></td>
</tr>
</tbody>
</table>

Meson spectra at $T = 0$ (input: ★)

Highly Improved Staggered Quarks
Probe of thermal modifications of spectral function

\[\frac{G^S(z, T)}{G^S(z, T = 0)} \simeq 1 \] the same \(\sigma \) at \(T = 0 \), or \(\neq 1 \) modified

\[T_c = (154 \pm 9) \text{ MeV} \]

Pseudo-scalar

\[J^P = 0^- \]

\[\bullet \frac{G^S(z, T)}{G^S(z, 0)} \simeq 1 \text{ at short distance} \quad \text{physics: not sensitive to} \ T \]

\[\bullet \frac{G^S(z, T)}{G^S(z, 0)} \neq 1 \text{ at large distance} \quad \text{thermal modification of} \ \sigma \]
Probe of thermal modifications of spectral function

\[\frac{G^S(z, T)}{G^S(z, T = 0)} \simeq 1 \text{ the same } \sigma \text{ at } T = 0, \text{ or } \neq 1 \text{ modified} \]

Pseudo-scalar \(J^P = 0^- \)

\[\frac{G^S(z, T)}{G^S(z, T = 0)} = 1 \]

\(T_c = (154 \pm 9) \text{ MeV} \)

- \(G^S(z, T)/G^S(z, 0) \simeq 1 \) at short distance ➡ physics: not sensitive to \(T \)
- \(G^S(z, T)/G^S(z, 0) \neq 1 \) at large distance ➡ thermal modification of \(\sigma \)
Ratio of spatial correlation functions

Probe of thermal modifications of spectral function

\[G^S(z, T) / G^S(z, T = 0) \simeq 1 \] the same \(\sigma \) at \(T = 0 \), or \(\neq 1 \) modified \(T_c = (154 \pm 9) \text{ MeV} \)

Pseudo-scalar \(J^P = 0^- \)

- \(G^S(z, T) / G^S(z, 0) \simeq 1 \) at short distance \(\rightarrow \) physics: not sensitive to \(T \)
- \(G^S(z, T) / G^S(z, 0) \neq 1 \) at large distance \(\rightarrow \) thermal modification of \(\sigma \)
- modification at \(T < T_c \)
Ratio of spatial correlation functions

Probe of thermal modifications of spectral function

\[\frac{G^S(z, T)}{G^S(z, T = 0)} \approx 1 \quad \text{the same } \sigma \text{ at } T=0 \text{, or } \neq 1 \text{ modified} \]

\[T_c = (154 \pm 9) \text{ MeV} \]

Pseudo-scalar

\[J^P = 0^- \]

\[G^S(z, T)/G^S(z, 0) \approx 1 \text{ at short distance} \quad \text{physics: not sensitive to } T \]

\[G^S(z, T)/G^S(z, 0) \neq 1 \text{ at large distance} \quad \text{thermal modification of } \sigma \]

- modification at \(T < T_c \), explicit flavor dependence at \(T > T_c \)
Ratio of spatial correlation functions

Probe of thermal modifications of spectral function

\[\frac{G^S(z, T)}{G^S(z, T = 0)} \approx 1 \] the same \(\sigma \) at \(T = 0 \), or \(\neq 1 \) modified

Pseudo-scalar \(J^P = 0^- \)

- \(G^S(z, T)/G^S(z, 0) \approx 1 \) at short distance \(\rightarrow \) physics: not sensitive to \(T \)
- \(G^S(z, T)/G^S(z, 0) \neq 1 \) at large distance \(\rightarrow \) thermal modification of \(\sigma \)
- modification at \(T < T_c \), explicit flavor dependence at \(T > T_c \)

\[T_c = (154 \pm 9) \text{ MeV} \]
\[\Delta M(T) = M(T) - m_0 \sim \text{change of “binding energy”} \]

Pseudo-scalar \(J^P = 0^- \)

- \(u\bar{d}, u\bar{s}, u\bar{c} \): explicit thermal modification below \(T_c \),
- similar modification pattern at \(T < T_c \),
- explicit flavor dependence at \(T > T_c \)
$\Delta M(T) = M(T) - m_0 \sim \text{change of “binding energy”}$

- $u\bar{d}, u\bar{s}, u\bar{c}$: explicit thermal modification below T_c,
- similar modification pattern at $T < T_c$,
- explicit flavor dependence at $T > T_c$
- $s\bar{s}, s\bar{c}$: slight modification below T_c
- $c\bar{c}$: stable beyond T_c

PRD91 (2015) 5, 054503
Restoration of broken symmetries

Degeneracy of vector partners \rightarrow restoration of chiral symmetry
Degeneracy of scalar partners \rightarrow (effective) restoration of $U_A(1)$ symmetry

$G^S(z, T)$
Restoration of broken symmetries

Degeneracy of vector partners \rightarrow restoration of chiral symmetry
Degeneracy of scalar partners \rightarrow (effective) restoration of $U_A(1)$ symmetry

$G^S(z, T)$
Restoration of broken symmetries

Degeneracy of vector partners \rightarrow restoration of chiral symmetry
Degeneracy of scalar partners \rightarrow (effective) restoration of $U_A(1)$ symmetry

$G^S(z, T)$

- Vector partner degenerates at $T \sim 1.0T_c -- 1.1T_c$
Restoration of broken symmetries

Degeneracy of vector partners \rightarrow restoration of chiral symmetry
Degeneracy of scalar partners \rightarrow (effective) restoration of $U_A(1)$ symmetry

$G^S(z, T)$

- Vector partner degenerates at $T \sim 1.0T_c - 1.1T_c$
Restoration of broken symmetries

Degeneracy of vector partners \rightarrow restoration of chiral symmetry
Degeneracy of scalar partners \rightarrow (effective) restoration of $U_A(1)$ symmetry

$G^S(z, T)$

- Vector partner degenerates at $T \sim 1.0T_c--1.1T_c$
Restoration of broken symmetries

Degeneracy of vector partners \rightarrow restoration of chiral symmetry
Degeneracy of scalar partners \rightarrow (effective) restoration of $U_A(1)$ symmetry

$G^S(z, T)$

- Vector partner degenerates at $T \sim 1.0T_c \sim 1.1T_c$
Restoration of broken symmetries

Degeneracy of vector partners \Rightarrow restoration of chiral symmetry
Degeneracy of scalar partners \Rightarrow (effective) restoration of $U_A(1)$ symmetry

$G^S(z, T)$

- Vector partner degenerates at $T \sim 1.0T_c - 1.1T_c$
- Scalar partner degenerates at $T \sim 1.4T_c - 1.6T_c$
Restoration of broken symmetries

Degeneracy of vector partners \Rightarrow restoration of chiral symmetry
Degeneracy of scalar partners \Rightarrow (effective) restoration of $U_A(1)$ symmetry

$$G^S(z, T)$$

- Vector partner degenerates at $T \sim 1.0T_c -- 1.1T_c$
- Scalar partner degenerates at $T \sim 1.4T_c -- 1.6T_c$
Restoration of broken symmetries

Large distance behavior of spatial correlator

\[G^S(z, T) \xrightarrow{z \to \infty} A e^{-M(T)z} \]

Light-unflavored \(u\bar{d} \)

- Vector partner degenerates at \(T \sim 1.0T_c -- 1.1T_c \)
- Scalar partner degenerates at \(T \sim 1.4T_c -- 1.6T_c \)

chiral: restored, \(U_A(1) \): broken at \(T_c \), no dependence on lattice spacing

Open: \(N_\tau = 8 \)
Black: \(N_\tau = 10 \)
Filled: \(N_\tau = 12 \)

\[m_l/m_s = 1/20 \]
Restoration of broken symmetries

Large distance behavior of spatial correlator:

\[\langle S(0, T) \rangle \to z \to \infty, \quad A e^{-M(T)z} \]

Light-unflavored:

- Vector partner degenerates at \(T \approx 1.0 \) \(T_c \)
- Scalar partner degenerates at \(T \approx 1.4 \) \(T_c \)

\[\text{chiral: restored, } U_A(1): \text{broken at } T_c, \text{ no dependence on lattice spacing} \]

\[N_\tau = 12, \quad m_l/m_s = 1/27 \]
Summary

In-medium mesons from spatial correlation function

- Sensitive to thermal effect at finite \(T \) on lattice
 - Direct probe of modification of meson spectral function
 - Indicator of restorations of broken symmetries

(2+1)-flavor QCD lattice simulations with HISQ of ratio: \(G^S(z, T)/G^S(z, T = 0) \), screening mass: \(G^S(z, T) \xrightarrow{z \to \infty} Ae^{-M(T)z} \)

- \(u\bar{d}, u\bar{s}, u\bar{c} \): explicit thermal modification below \(T_c \),
 - similar modification pattern below \(T_c \),
 - explicit flavor dependence above \(T_c \)
- \(s\bar{s}, s\bar{c} \): slight modification below \(T_c \)
- \(c\bar{c} \): stable beyond \(T_c \)

- Degeneracies of parity partners
 - chiral: restored, \(U_A(1) \): broken at \(T_c \)
 - in continuum and physical quark mass (preliminary)

PRD91 (2015) 5, 054503