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QCD phase diagram

• Chiral phase transition is described by the chiral order parameters 
 

• Some model analyses suggest that spatially modulated chiral 
condensate can appear near the QCD critical point.
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Figure 1. Conjectured QCD phase diagram with boundaries that define various states of QCD matter based on SχB patterns.

and sets a natural scale for the critical temperature of
chiral restoration. In the chiral perturbation theory (χPT)
the chiral condensate for two massless quark flavours at
low temperature is known to behave as ⟨ψ̄ψ⟩T /⟨ψ̄ψ⟩ =
1 − T 2/(8f 2

π ) − T 4/(384f 4
π ) − · · · with the pion decay

constant fπ ≃ 93 MeV [29]. Although the validity of
χPT is limited to low temperature, this is clear evidence
of the melting of chiral condensate at a finite temperature.
At low baryon density, likewise, the chiral condensate
decreases as ⟨ψ̄ψ⟩nB/⟨ψ̄ψ⟩ = 1 − σπN nB/(f 2

π m2
π )− · · ·

[30–32] where σπN ∼ 40 MeV is the π–N sigma term.
(For higher order corrections, see [33, 34].)
The chiral transition is a notion independent of the
deconfinement transition. In section 3.2 we classify the
chiral transition according to the SχB pattern.

2.2. Conjectured QCD phase diagram

Figure 1 summarizes our state-of-the-art understanding on the
phase structure of QCD matter including conjectures which
are not fully established. At present, relatively firm statements
can be made only in limited cases—phase structure at a finite
T with a small baryon density (µB ≪ T ) and that at an
asymptotically high density (µB ≫ %QCD). Below we will
take a closer look at figure 1 from a smaller to larger value of
µB in order.

Hadron-quark phase transition at µB = 0. The QCD phase
transition at finite temperature with zero chemical potential
has been studied extensively in the numerical simulation on
the lattice. Results depend on the number of colours and
flavours as expected from the analysis of effective theories
on the basis of the renormalization group together with the
universality [35, 36]. A first-order deconfinement transition
for Nc = 3 and Nf = 0 has been established from the
finite-size scaling analysis on the lattice [37], and the critical
temperature is found to be Tc ≃ 270 MeV. For Nf > 0

light flavours it is appropriate to address more on the chiral
phase transition. Recent analyses on the basis of the staggered
fermion and Wilson fermion indicate a crossover from the
hadronic phase to the quark–gluon plasma for realistic u, d
and s quark masses [38, 39]. The pseudo-critical temperature
Tpc, which characterizes the crossover location, is likely to be
within the range 150–200 MeV as summarized in section 4.2.

Even for the temperature above Tpc the system may be
strongly correlated and show non-perturbative phenomena
such as the existence of hadronic modes or pre-formed
hadrons in the quark–gluon plasma at µB = 0 [28, 40]
as well as at µB ̸= 0 [41–43]. Similar phenomena can
be seen in other strong-coupling systems such as the high-
temperature superconductivity and in the BEC regime of
ultracold fermionic atoms [44].

QCD critical points. In the density region beyond µB ∼ T
there is no reliable information from the first-principles lattice
QCD calculation. Investigation using effective models is a
pragmatic alternative then. Most of the chiral models suggest
that there is a QCD critical point located at (µB = µE, T = TE)
and the chiral transition becomes first order (crossover) for
µB > µE (µB < µE) for realistic u, d and s quark masses
[45–48] (see point E in figure 2). The criticality implies
enhanced fluctuations, so that the search for the QCD critical
point is of great experimental interest [49, 50].

There is also a possibility that the first-order phase
boundary ends at another critical point in the lower-T and
higher-µB region whose location we shall denote by (µF, TF)
as shown by point F in figure 2. As discussed in section 6,
the cold dense QCD matter with three degenerate flavours
may have no clear border between superfluid nuclear matter
and superconducting quark matter, which is called the quark–
hadron continuity.

In reality, the fate of the above critical points (E and F)
depends strongly on the relative magnitude of the strange quark
mass ms and the typical values of T and µB at the phase
boundary.

3

h ̄i�5~⌧ i = ~⇡(x)h ̄ i = �(x)

Fukushima-Hatsuda (2011)

L =  ̄
⇥
i /D +mq

⇤
 +

1

4
trFµ⌫F

µ⌫

h ̄ i h ̄i�5~⌧ i



Inhomogeneous chiral condensation

• We know some (one-dimensional) solutions of the gap equation.

D. Nickel 2009
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FIG. 1: Left: Structure of the NJL phase diagram in the chiral limit as a function of temperature T and

quark chemical potential µq for Mq = 300MeV. The black (short-dashed) line indicates the second order

phase transition from chirally broken to restored phase, the red (solid) line the first order phase transition

and the bullet the critical point. The spinodal region is enclosed by the blue (long-dashed) lines. Right:

Same plot as on the left including the orange (shaded) domain where the energetically preferred ground

state is inhomogeneous.

the chiral limit and instead of adjusting ⟨ψ̄ψ⟩, we choose a value for Mq. These choices in turn fix

the model parameters through Eq.(40). On the left side of Fig. 1 we present the phase diagram

restricting to homogeneous phases for a value of Mq = 300MeV. For larger temperatures we see the

second order phase transition line from the chirally broken to the restored phase, which turns into a

first order phase transition line at (µcr = 269MeV, Tcr = 74MeV) locating the chiral critical point.

The first order line then ends at (µ = 312MeV, T = 0MeV), where the associated spinodal region

spannes about 18MeV in the quark chemical potential µq. Although the chiral condensate with

⟨ψ̄ψ⟩ = −(193MeV)3 for this case is phenomenologically too small, we observe that the structure of

the phase diagram is similar to that typically found in NJL models using a sharp three-momentum

cutoff [8].

Focusing on the region near/around the first order phase transition and the critical point, the right

hand side of Fig. 1 shows the same lines as on the left, but now also including the domain where

inhomogeneous phases are energetically preferred. As discussed in Ref. [17] for the vicinity of the

critical point, we observe that there is no longer a first order phase transition in the phase diagram,

since it is replaced by an inhomogeneous ground state. The transitions from the chirally broken to

the inhomogeneous and from the inhomogeneous to the restored phase are both second order, where

the first transition is characterized by the formation of (in the perpendicular direction) localized

domain-wall solitons and the second by the melting of the condensate.

The nature of the phase transitions is also apparent in the squared spatial average ⟨M(x)2⟩
1

2

of the order parameter as well as the wave-vector of the one-dimensional modulation q. For

vanishing temperatures these are depicted on the left of Fig. 2 for Mq = 250, 300, 350MeV. We

observe that q continuously raises from q = 0 at the transition from the chirally broken to the

inhomogeneous phase, which is related to the formation of localized objects. On the other hand

⟨M(x)2⟩
1

2 continuously goes to zero at the transition from the inhomogeneous to the chirally

restored phase. In the same plot we also see that at vanishing temperatures the constituent quark

Critical point → Lifshitz point

h ̄ i 6= 0

h ̄ i = 0

Typically the period of condensation is order of fm.



GL expansion

• Pion condensation tends to be energetically unfavored near the 
Lifshitz point.

• Higher-dimensional condensations are energetically unfavored.

H. Abuki, D. Ishibashi and K. Suzuki (2012)
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FIG. 4. (color online). (a) Effective order parameters,
(b) wave vectors, and (c) potentials as a function of η2 for
the LO (dashed, red), FF (dotted, blue) and SN (solid) states.
The quantities corresponding to the homogeneous condensate
are shown by dot-dashed lines. The solid lines are the same
as those depicted in Fig. 2.

This was worked out numerically and the location of the
critical point was found as

η2(LO ↔ χSB) ∼= 0.1519, (28)

which is larger than ηI2 ∼ 0.1389 for a soliton forma-
tion, reflecting the fact that the LO phase is metastable
against the SN phase. Crossing the critical point from

the χSB phase to the LO phase, the magnitude of the
condensate drops by about 20%. Also the ratio of the
amplitude of mass to the magnitude of the wave vector
in the LO phase just at the critical point has been found
to be about 0.8. These can be summarized as

M0(LO)

Mconst.(χSB)
∼= 0.81,

M0(LO)

k(LO)
∼= 0.80. (29)

We note that all these ratios are the universal constants
associated with the first-order phase transition between
the χSB and LO phases, at the sixth order we are work-
ing.
We also remark that the first Ansatz of counting M0

and k as the same order in magnitude is consistent at
this transition. At the onset of the condensate, however,
the amplitude M0 vanishes while k remains finite so that
the derivative terms are more important than the bulk
homogeneous terms. In contrast, at the onset of the do-
main wall formation, the derivative terms play a minor
role.

B. Most general condensate with higher harmonics

We here try to see if Jacobi’s elliptic function is the
most favorable solution among 1D modulation patterns.
We first note that Jacobi’s elliptic function just gives
a one parameter subgroup of solutions to the EL equa-
tion. It should be stressed that the original EL equation
(9) is a nonlinear fourth-order differential equation while
Eq. (11) is basically the sum of three differential equa-
tions each of which can be obtained from the second order
differential equation which the elliptic function obeys. It
is thus not obvious that it really covers all the solutions
to the original EL equation. Keeping this in mind, we try
the most general assumption for the spatially modulated
chiral condensate. We set the condensate in the form of
a harmonic expansion series as

MHH(z; {ℓH,MH
n }) =

∑

n=1,3,5,···

MH
n sin((2π/ℓH)nz),

(30)
where {Mn} and ℓH are variational parameters. We note
that the even components are absent if we restrict the
condensate to a half antiperiodic period M(z + ℓH/2) =
−M(z). This is quite reasonable for the case of the chiral
limit. In fact we have checked numerically that the even
components are vanishing even if included. Hereafter, we
abbreviate the state characterized by MHH as the higher
harmonic (HH) state. We took into account up to the
fifth harmonics in the expansion above and minimized the
thermodynamic potential with respect to MH

1 ,MH
3 ,MH

5
and the modulation period ℓH.
The resulting energy of the HH state appeared to be

very close to that of the SN state. In order to illustrate
the fact, we depict in Fig. 5(a) the effective order param-
eter mave =

√

⟨MHH/SN(z)2⟩ as a function of η2, both
for the SN and HH states: the solid line for the SN state,

FF: M(z) = Δ exp(ipz)
LO: M(z) = Δsin(pz)
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the magnitude of the chiral condensate vanishes. Then
considering the fact that the separation length between
domain walls diverges as ℓP/2 ∼ 1/ log(η2−ηI2) while the
size of the wall where quarks are present, 1/k, stays al-
most constant, the averaged quark number density may
be approximately computed as

⟨q†q⟩ ∼ n0
1/k

ℓP + 1/k
∼ −

n0

log
(

κI

48 (η2 − ηI2)
) , (23)

with n0 defined as the quark density in the absence of a
condensate. Assuming n0 does not change significantly
in the vicinity of the critical point, the quark number
susceptibility on the side of the inhomogeneous phase
becomes

d⟨q†q⟩
dµ

∼
dη2
dµ

n0

(η2 − ηI2)
[

log
(

κI

48 (η2 − ηI2)
)]2 . (24)

This has exactly the same parametric dependence on η2
as Eq. (22), suggesting that at T = 0 the divergence of
the second derivative of Ω has originated in the divergent
quark number susceptibility [13, 28, 29].

III. OTHER CRYSTALLIZATION PATTERNS
IN 1D AND HIGHER DIMENSIONAL

MODULATIONS

In this section we address the question of whether or
not states other than the solitonic condensate, with ei-
ther 1D or higher dimensional modulations, are possi-
ble. We work near the Lifshitz point, so we retain up
to sixth order in GL expansion as in the previous sec-
tion. In Sec. III A, we discuss the thermodynamics of the
LO-like chiral condensate, Eq. (5), and the FF-like chiral
spiral [9] in some detail. Even though these two states
are less favorable than the solitonic solution, the analysis
still serves as an illustrative benchmark when we explore
higher dimensional modulations. In Sec. III A, we try a
general #Ansatz for the 1D modulation, i.e., the conden-
sate expanded in higher harmonics. For comparison, we
also make a harmonic analysis on the solitonic state. In
Sec. III B we introduce higher dimensional analogs of the
LO-like chiral density wave, and see if such higher di-
mensional chiral lattices can be realized near the Lifshitz
point.

A. Real chiral density wave and chiral spiral

Here we discuss the thermodynamics of two typical chi-
ral density waves: a real, LO-like sinusoidal chiral density
wave of the form Eq. (5) and a FF-like chiral spiral char-
acterized by a single plane wave

MFF(z) = M0e
ikz . (25)

The imaginary part should be understood as the pseu-
doscalar condensate, for one choice in the charge neutral

channel: MFF(x) ∼ −2G(⟨q̄q⟩+ i⟨q̄γ5iτ3q⟩). This is also
called the “dual chiral density wave” abbreviated to the
DCDW in the original paper [9]. In the following we re-
fer to this state mainly as the FF state or chiral spiral.
When the chiral condensate involves a finite imaginary
part, we need to generalize the GL functional so as to
allow it. The generalized functional for complex chiral
condensates but with restriction to 1D modulations was
worked out first in the chiral GN model [30]; the result-
ing functional has terms asymmetric with respect to an
interchange between the real and imaginary parts of the
condensate, Re(m) ↔ Im(m). These terms are respon-
sible for the realization of the FF-type complex chiral
condensate in the GN model [27] and also in the (1+ 1)-
dimensional NJL model in the large N limit [16, 32]. In
the NJL model in the 1+3 dimension, however, these
terms are shown to vanish [10]. Then the functional is
cast in the following form in the chiral limit, using the
same convention as Eq. (4):

ω̃ = η2

2 |m|2 + 1
4 sgn(α4)(|m|4 + |m′|2)

+ 1
6

(

|m|6 + 4|m|2|m′|2 +Re(m′)2(m∗)2 + 1
2 |m

′′|2
)

.

(26)
When the condensate is real [m(z)∗ = m(z)], this func-
tional reduces to Eq. (4) with the restriction to the 1D
modulation, M(x) → M(z), substituted. As before, we
concentrate on the case α4 < 0. In Fig. 4 we show the am-
plitude of masses (a), the magnitude of wave vectors (b),
and corresponding thermodynamic potentials (c) for the
FF and LO condensates, as a function of η2. The wave
vector q is just k (kII) for the FF (LO) state, while for the
solitonic state it is given by 2π/ℓP. From the figures, we
see that the real LO phase is more favorable than the FF-
like chiral spiral over the whole range of η2, while they are
less favorable than the solitonic phase, which will often
be denoted by the solitonic (SN) state hereafter. The FF
and LO (and SN) states become degenerate at the onset
of condensate at ηII2 = 3/8. Near the point it is easy
to perform the expansion in M0. The result for the LO
phase is already given by Eq. (6), and that for the FF
phase is obtained at the same order in M0 as [10]

Ω = ⟨ω(MFF(x))⟩WS

=
(η2

2 − 3
16

)

M2
0 + 1

2M
4
0 +O(M6

0 ).
(27)

The coefficient ofM4
0 for the FF phase is twice as large as

that of the LO phase, from which we see that the energy
for the FF phase is higher than that for the LO phase at
least near the onset. This may be reasonably understood
along the same line as [39, 40] where it is stressed that
additional terms are required in the effective theory in
order to recover the broken time reversal symmetry in
the FF state, which results in an extra energy cost.
Since the LO phase is more favorable than the FF

phase, we concentrate on the LO phase in the follow-
ing. The transition between the homogeneous χSB and
LO phases is of first order. We can obtain the critical η2
by solving minM ω(Mconst.) = minM,k⟨ω(M0 sin kz)⟩WS.

Free energy:
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TABLE I. Comparison between Msn(z) and MHH(z). The energy densities Ωsn and ΩHH, the values of Fourier strengths

{MH/sn
1 ,MH/sn

3 ,MH/sn
5 }, and modulation periods ℓH and ℓP(ν, k) are tabulated at four representative points η2 =

0.375, 0.257, 0.154, and 0.1393 which are assigned by the letters A, B, C, and D, respectively.

ν ℓP ℓH Ωsn ΩHH M sn
1 MH

1 M sn
3 MH

3 M sn
5 MH

5

A (η2 = 0.3749) 0.009 5.13 5.13 −9× 10−10 −9× 10−10 0.0111 0.0111 6× 10−8 6× 10−8 O(10−13) O(10−13)

B (η2 = 0.2569) 0.458 5.85 5.85 −0.0038 −0.0038 0.5291 0.5291 0.0077 0.0077 0.0001 0.0001

C (η2 = 0.1536) 0.821 8.22 8.21 −0.0161 −0.0161 0.8673 0.8665 0.0563 0.0559 0.0039 0.0038

D (η2 = 0.1389) 0.991 14.98 10.48 −0.0193 −0.0192 1.0672 0.9781 0.1951 0.1077 0.0455 0.0132

original EL equation in 3D is

0 = ∆2M(x) + 3∆M(x)− 10
[

M(∇M)2 +M2∆M
]

+6η2M − 6M3 + 6M5,
(32)

where the operator ∆ = ∂2
x + ∂2

y + ∂2
z is the three-

dimensional Laplacian. This is a fourth-order nonlin-
ear partial differential equation. The solution space for
the partial differential equation is much wider than that
for the ordinary differential equation. Therefore it is not
trivial that Jacobi’s elliptic function stays as the most fa-
vorable structure when the restriction to 1D modulations
is taken away. Here we do not search for the formal solu-
tion, but only try some specific crystals having the simple
square or cubic symmetry. In order to demonstrate how
the dimensionality of a crystal structure affects the free
energy, we concentrate on the LO-type phase which has
a simpler form than the elliptic function. We set multi-
dimensional LO-type real condensates as

MLO;1D(x) =
√
2M0 sin(kz),

MLO;2D(x) = M0(sin(kx) + sin(ky)),

MLO;3D(x) =
√

2
3M0(sin(kx) + sin(ky) + sin(kz)).

(33)
MLO;2D(x) is equivalent to the “egg-carton” Ansatz in
[34]. Each condensate is characterized by two real pa-
rameters M0 and q whose values are to be determined
via minimization of Ω. In Fig. 6(a) and (b) we show
effective order parameters and free energies. One can
see that the energy is an increasing function of the di-
mensionality. Also it is notable that the critical points
at which the transitions from the Wigner to the crystal
phases take place are common among all three states. To
see this analytically, we expand Ω in powers of M0 as

ΩLO;1D =
(η2

2 − 3
16

)

M2
0 + 6

24M
4
0 +O(M6

0 ),

ΩLO;2D =
(

η2

2 − 3
16

)

M2
0 + 9

24M
4
0 +O(M6

0 ),

ΩLO;3D =
(η2

2 − 3
16

)

M2
0 + 10

24M
4
0 +O(M6

0 ).

(34)

Since the quadratic coefficients take exactly the same
form, η2

2 − 3
16 ≡ 1

2 (η2 − ηII2 ), the critical point is shared.
On the other hand, from the coefficients of quartic terms,
we see that the free energies are on the order of the di-
mensionality of modulation. The above formulas for en-
ergy density can be easily generalized to the case with
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FIG. 6. (color online). (a) The effective order parameters
for the 1D-LO (dashed, red), 2D-LO (dotted, green), 3D-LO
(dot-dot-dashed, magenta), and the solitonic state (solid) as
a function of η2. For comparison, the quantity for the FF
phase is also depicted by the thin solid line (blue). (b) The
thermodynamic potentials as a function of η2.

the LO condensate in an arbitrary dimension, d, defined
by

MLO;dD(x) =
√

2
dM0 (sin(kx1) + · · ·+ sin(kxd)) , (35)

with x = (x1, x2, · · · , xd) being the d-dimensional vector.
In this case the thermodynamic potential looks like

ΩLO;dD =
(η2

2 − 3
16

)

M2
0 + 2d−1

4d M4
0

+ 5(4d2−16d+11)
48d2 M6

0 .
(36)
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[34]. Each condensate is characterized by two real pa-
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via minimization of Ω. In Fig. 6(a) and (b) we show
effective order parameters and free energies. One can
see that the energy is an increasing function of the di-
mensionality. Also it is notable that the critical points
at which the transitions from the Wigner to the crystal
phases take place are common among all three states. To
see this analytically, we expand Ω in powers of M0 as
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we see that the free energies are on the order of the di-
mensionality of modulation. The above formulas for en-
ergy density can be easily generalized to the case with
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FIG. 6. (color online). (a) The effective order parameters
for the 1D-LO (dashed, red), 2D-LO (dotted, green), 3D-LO
(dot-dot-dashed, magenta), and the solitonic state (solid) as
a function of η2. For comparison, the quantity for the FF
phase is also depicted by the thin solid line (blue). (b) The
thermodynamic potentials as a function of η2.

the LO condensate in an arbitrary dimension, d, defined
by

MLO;dD(x) =
√

2
dM0 (sin(kx1) + · · ·+ sin(kxd)) , (35)

with x = (x1, x2, · · · , xd) being the d-dimensional vector.
In this case the thermodynamic potential looks like

ΩLO;dD =
(η2

2 − 3
16

)

M2
0 + 2d−1

4d M4
0

+ 5(4d2−16d+11)
48d2 M6

0 .
(36)
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Symmetry breaking

M

0 = M0(z + u(x))Phonon:

2

wash out the modulated condensate and leads to a phase
with quasi-long-range order. Next we derive the free en-
ergy of pions. Finally, Sec. IV is devoted to concluding
remarks. Some technicalities are summarized in appen-
dices.

II. SYMMETRY CONSIDERATION

When a chiral condensate is modulated along one di-
mension, the phonon mode (u) appears as the Nambu-
Goldstone (NG) mode of translational symmetry break-
ing, in addition to pions (⇡). In the real kink crys-
tal phase discussed later, the vectorial isospin symme-
try SU(2)

V

is unbroken and there is no mixing between
phonons and pions. Therefore, the symmetry breaking
pattern reads1

R3

o SO(3) ! ⇥
R2

o SO(2)

⇤⇥ ⇥
discrete symmetry

⇤
(1)

in addition to the chiral symmetry breaking pattern,
SU(2)

R

⇥SU(2)

L

! SU(2)

V

. Here Rd and SO(d) denote
the d dimensional translational and rotational symme-
try groups, respectively. The discrete symmetry includes
a discrete translational symmetry along the modulated
direction of the condensate as a subgroup, which is a
remnant of the translation R in this direction. Other el-
ements of the discrete group depend on the shape of the
kink crystal2.

In this symmetry breaking pattern, two rotational and
one translational symmetries are spontaneously broken.
We note that there appears no gapless mode associated
with the broken rotational symmetry. In general, the
number of NG modes does not coincide with that of bro-
ken global spacetime symmetries [40–42].

In the remainder of this section, we present a general
discussion on the effective low-energy theory of phonons
(see also [25, 31, 32, 43, 44]). Let us consider a the-
ory with the free energy F [�] =

R
d3x F(�, @�) and

assume that h�i = �
0

(x) is a static solution minimiz-
ing F [�]. In the following we assume that the free
energy density F respects rotational and translational
symmetries. If �

0

is modulated in one direction and
is homogeneous in the transverse directions, one can
write it as �

0

(x) / f(q · x), where q is a vector paral-
lel to the modulated direction and f(·) is a dimension-
less function. Now we consider a translational fluctua-
tion corresponding to the phonon around this solution,

1
The free energy has no Lorentz symmetry because it is broken by

the existence of matter. Therefore, we do not take into account

the Lorentz symmetry breaking as the breaking pattern.

2
In general, real kink crystals can be classified by the Frieze group.

The real kink crystal discussed in this paper has the ZoZ2 sym-

metry, where Z and Z2 represent the glide reflection symmetry

and the reflection symmetry at a certain vertical line, respec-

tively.

�(x) / f(q · x+ qu(x)) with q = |q|. Plugging this func-
tion into F [�] and expanding in powers of u and ru, one
obtains the effective theory for the u field.

Rotational symmetry of the original free energy implies
that f(q ·x) and f(q0 ·x), with a rotated vector q0, have
the same value of F [�]. Writing q

0 ·x = q ·x+(q

0�q) ·x,
it follows that the fluctuation qu(x) = (q

0�q)·x does not
cost any additional free energy. This imposes a constraint
on the form of the effective theory. Suppose q points
in the z direction, with no loss of generality. Under a
rotation by ✓ about the y axis, the gradients of u are
given by

@
z

u = �1 + cos ✓ , @
x

u = sin ✓ , (2)

hence (1+@
z

u)2+(r?u)2 is invariant under the rotation.
Then the effective theory of u invariant under rotation
can be constructed as a function of (1+@

z

u)2+(r?u)2 =

2@
z

u+ (ru)2 +1 and higher-order derivative terms such
as r2

?u.
A total derivative term @

z

u would be allowed in the ef-
fective theory if we only require the stationary condition
for F under a variation of � with fixed boundary condi-
tions. However, global minimization of F excludes this
term, which can be seen as follows: consider a fluctua-
tion u = "z over the ground state �

0

(z). It corresponds
to a dilatation z ! (1 + ")z. In the presence of a term
/ A@

z

u in F , this u will generate an energy shift

�F = "A+O("2) , (3)

indicating that there exists a lower-energy direction when
A 6= 0. In other words, we have A = 0 when the conden-
sate is the ground state.

This observation imposes a constraint that F should
depend on 2@

z

u + (ru)2 at least quadratically. Thus
we conclude that the free energy density for the phonon
assumes a form

F = B


@
z

u+

1

2

(ru)2
�
2

+ C(r2

?u)
2 , (4)

at the leading order of the derivative expansion, with low-
energy constants B and C. In deriving (4) we exploited
the fact that the term (@

z

u)(r2

?u) is prohibited if we
assume parity invariance at low energy (see Appendix
E 3 for more details). Here we emphasize that the ab-
sence of (r?u)2 in F makes the dispersion of u strongly
anisotropic.

Such an anisotropic dispersion does not appear when
the rotational symmetry is explicitly broken, just as in
QCD under external magnetic fields. This is shown in
Appendix A.

III. REAL KINK CRYSTAL

In this section, we study the long-wavelength fluctu-
ations of the real kink crystal chiral condensate within
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ations of the real kink crystal chiral condensate within

M 0 = M0(z)e
i⇡(x)Pion:

Chiral symmetry

h ̄ i = M(z)

• Rotational and translational symmetries are spontaneously broken.

h ̄i�5⌧3 i = M sin(qz)

h ¯  i = M cos(qz)DCDW is special. T-G. Lee, E. Nakano, et.al, (2015)

We expects four low energy excitations.

We can not distinguish  the chiral rotation and spacial translation

Three low energy excitations appear

h ̄i�5~⌧ i = 0



Landau’s discussion

• Operations which change the energy of the system appear on the 
free energy.

z

L

z

L

z

L’ = L/(1+a)

Translation (u = cons) Rotation (u =θx or u = θy)

Stretch (u = az)

Energy unchanged

Energy changed

u(x)2

(@zu(x))
2

(r?u(x))
2

Deformation of condensation:
M

0 = M(z + u(x))

6

FIG. 4. Eigenvalues of Hu in (21) at (T, µ) = (70, 286.0)
[MeV], for k? = 0 (top) and for kz = 0 (bottom). The
domain �0.5  kz/Q  0.5 is the first Brillouin zone. kz and
E are normalized by Q and k? is normalized by the UV cutoff
scale ⇤.

that u can be decomposed into a plane wave and a peri-
odic function:

u(x) = e

ik?·x?
e

ikzz �(z) , (22)

where k? is the momentum in transverse directions, k
z

is the so-called crystal momentum, and �(z) is a periodic
function, viz. �(z + L) = �(z). Substituting (22) into
(20) yields an eigenvalue equation for �, which we have
solved numerically by way of a Fourier decomposition
�(z) =

P
n

max

n=�n

max

�
n

e

inQz /
p
L with n

max

= 20. To
see convergence, we have increased n

max

up to 30 and
confirmed that the results are unchanged.

In Fig. 4, we show the eigenvalue E numerically com-
puted for varying k

z

and k?. A marked difference from
the eigenvalue of particles in a free space is that there
are infinitely many levels for given momenta, in analogy
to electrons in metals which develop a band structure.

It is the lowest eigenvalue E
0

(red curves in Fig. 4) that

FIG. 5. B and C at T = 70 MeV (top) and T = 10 MeV
(bottom). B and C are normalized by the UV cutoff param-
eter ⇤ with appropriate dimensions. The dotted vertical lines
mark the boundaries of the modulated phase.

pertains to the free energy of long-wavelength phonons.
By adopting a variational approach, one can rigorously
show that E

0

behaves for k
z

⇠ k? ⇠ 0 as

E
0

⇠ Bk2
z

+ Ck4? , (23)

where B and C are functions of T and µ. The absence
of the O(k2?) term in (23) is guaranteed by the property
(17). The proof of (23) is somewhat technical and is
relegated to Appendix E. Equation (23) shows that the
elastic free energy of low-energy phonons becomes

Fu

el

=

1

2

Z
d3x

⇥
B(@

z

u)2 + C(r2

?u)
2

⇤
. (24)

One may suspect that the coefficient B would be given
by

H
f
1

. However, as shown in Appendix E, this naive
guess is incorrect: the coupling between �

0

and �
n 6=0

is
not negligible even in the perturbation series in k

z

.
In order to extract the values of B and C from eigen-

values, we have numerically fitted the curve of E
0

with



GL expansion of NJL

• Expand free energy of the NJL model in amplitude and momentum of 
condensation.

• Solution of the GL equation is known.

5

A. Phase diagram

According to Nickel’s work [4], the GL expansion of the (3 + 1)-dimensional NJL model, to the sixth order, reads

⌦GL[M ] = ↵2M
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�
M4

+ (rM)
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+ ↵6

�
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The coefficients of the GL expansion are given as functions of temperature (T ) and chemical potential (µ):
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(23)

where G is the four Fermi coupling in the NJL model, N
c

and N
f

are the number of color and flavor respectively.
The integrals in the ↵

n

have the UV divergence and should be regularized with some regularization scheme. The GL
expansion is only varied near the QCD critical point at which ↵2 = ↵4 = 0.

In order to find the correct ground state of the GL potential, we have to solve the GL equation:

�

�M(y)

Z
⌦GLd

3x = 0 . (24)

If we assume an one-dimensional modulation in z direction, the GL equation, reduces to that of the GN2 model,
whose general solution (up to a shift in z) is given [13–15] by

M0(z) = q
p
⌫ sn(qz; ⌫) , (25)

where q is a function of ⌫ through the relation
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One can easily check that M0 with (26) satisfies the GL equation (24). The period of M0 is given by

L =

4K[⌫]

q
, (27)

where K[⌫] is the complete elliptic integral of the first kind, in this article following the convention of [14, 15], we define
K(⌫) ⌘ R

⇡/2
0 (1� ⌫ sin2 t)�1/2dt. The elliptic parameter ⌫ 2 [0, 1] controls the shape of the solution; sn(z; 0) = sin z

and sn(z; 1) = tanh z. We can identify the solution sn(z; 1) as the homogeneous solution, because thermodynamically
tanh z is equivalent to the spatially constant configuration.

Once we get a set of temperature and chemical potential, the values of ↵2,↵4 and ↵6 are determined. Using the
values, we have to find the configuration which minimizes the thermodynamic potential;I
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where
H ⌘ 1

L

R
L

0 dz denotes an averaging over one period. In the second equality, we have used identities [13–15]
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0 = (⌫2 + 4⌫ + 1)q4M0 , (30)

where 0 denotes the z derivative such as M 0
= @

z

M , and we have also done partial integration. Since q is a function
of ⌫ through the relation (26),

H
⌦GL[M0] is a function of ⌫ only.

In fig. 1, we show the phase diagram of the GL expanded NJL model (22) with the kink crystal condensation.
To plot the phase diagram, we numerically find the minimum of (28). The Matsubara sums in ↵

n

have been done
analytically and we have numerically taken the momentum integrals. To regularize the UV divergence, we have
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where K[⌫] is the complete elliptic integral of the first kind, in this article following the convention of [14, 15], we define
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⇡/2
0 (1� ⌫ sin2 t)�1/2dt. The elliptic parameter ⌫ 2 [0, 1] controls the shape of the solution; sn(z; 0) = sin z

and sn(z; 1) = tanh z. We can identify the solution sn(z; 1) as the homogeneous solution, because thermodynamically
tanh z is equivalent to the spatially constant configuration.

Once we get a set of temperature and chemical potential, the values of ↵2,↵4 and ↵6 are determined. Using the
values, we have to find the configuration which minimizes the thermodynamic potential;I
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where 0 denotes the z derivative such as M 0
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M , and we have also done partial integration. Since q is a function
of ⌫ through the relation (26),

H
⌦GL[M0] is a function of ⌫ only.

In fig. 1, we show the phase diagram of the GL expanded NJL model (22) with the kink crystal condensation.
To plot the phase diagram, we numerically find the minimum of (28). The Matsubara sums in ↵

n

have been done
analytically and we have numerically taken the momentum integrals. To regularize the UV divergence, we have
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where G is the four Fermi coupling in the NJL model, N
c

and N
f

are the number of color and flavor respectively.
The integrals in the ↵
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have the UV divergence and should be regularized with some regularization scheme. The GL
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where G is the four Fermi coupling in the NJL model, N
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and N
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are the number of color and flavor respectively.
The integrals in the ↵
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have the UV divergence and should be regularized with some regularization scheme. The GL
expansion is only varied near the QCD critical point at which ↵2 = ↵4 = 0.

In order to find the correct ground state of the GL potential, we have to solve the GL equation:
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and sn(z; 1) = tanh z. We can identify the solution sn(z; 1) as the homogeneous solution, because thermodynamically
tanh z is equivalent to the spatially constant configuration.
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In fig. 1, we show the phase diagram of the GL expanded NJL model (22) with the kink crystal condensation.
To plot the phase diagram, we numerically find the minimum of (28). The Matsubara sums in ↵
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have been done
analytically and we have numerically taken the momentum integrals. To regularize the UV divergence, we have

with

Gap-equation:

Solution:

Coefficients:

Effective potential of NJL model near the Lifshitz point



Phase diagram

• Modulated chiral condensate is energetically favored than uniform one. 
• Consistent with non-expanded calculation.
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FIG. 1. Phase diagram of the NJL model in the chiral limit
with 6th order GL expansion. The Lifshitz point is located
at (T, µ) = (81.4, 276.4) [MeV].

that the real kink crystal phase in Fig. 1 appears to be
broader at low temperature. The phase boundary in our
results are consistent with Nickel’s observation [14] that
the real kink crystal phase is favored if ↵

2

> 0 and

�
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In Fig. 2, we plot the root-mean-square condensate

hhM2

0

ii1/2 ⌘
sI

M
0

(z)2 (14)

and the wave number Q of the real kink crystal at T = 70

MeV and T = 10 MeV. It is observed that both phase
transitions (from the kink crystal phase to the homoge-
neous and to the symmetric phase) are of second order:
At the transition with lower µ, the wave number grad-
ually rises from zero, implying the formation of widely
separated domain walls. On the other hand, at the transi-
tion with higher µ, the amplitude of M vanishes smoothly
with keeping a nonzero wave number. This behavior is
consistent with the preceding work with a non-expanded
potential [15].

B. Phonons

We would like to derive the elastic free energy of
phonons originating from the spontaneous breaking of
translation symmetry in the real kink crystal phase. Let
us substitute

M(x) = M
0

�
z + u(x)

�
= M

0

(z) +M 0
0

(z)u(x) +
1

2

M 00
0

(z)u(x)2 + · · ·

FIG. 2. The average magnitude of M and its wave number
Q, at T = 70 MeV (top) and T = 10 MeV (bottom).

into (5) and expand in u, dropping total derivatives.
Then
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The coefficients of the GL expansion are given as functions of temperature (T ) and chemical potential (µ):
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where G is the four Fermi coupling in the NJL model, N
c

and N
f

are the number of color and flavor respectively.
The integrals in the ↵

n

have the UV divergence and should be regularized with some regularization scheme. The GL
expansion is only varied near the QCD critical point at which ↵2 = ↵4 = 0.

In order to find the correct ground state of the GL potential, we have to solve the GL equation:

�

�M(y)

Z
⌦GLd

3x = 0 . (24)

If we assume an one-dimensional modulation in z direction, the GL equation, reduces to that of the GN2 model,
whose general solution (up to a shift in z) is given [13–15] by

M0(z) = q
p
⌫ sn(qz; ⌫) , (25)

where q is a function of ⌫ through the relation
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One can easily check that M0 with (26) satisfies the GL equation (24). The period of M0 is given by

L =

4K[⌫]

q
, (27)

where K[⌫] is the complete elliptic integral of the first kind, in this article following the convention of [14, 15], we define
K(⌫) ⌘ R

⇡/2
0 (1� ⌫ sin2 t)�1/2dt. The elliptic parameter ⌫ 2 [0, 1] controls the shape of the solution; sn(z; 0) = sin z

and sn(z; 1) = tanh z. We can identify the solution sn(z; 1) as the homogeneous solution, because thermodynamically
tanh z is equivalent to the spatially constant configuration.

Once we get a set of temperature and chemical potential, the values of ↵2,↵4 and ↵6 are determined. Using the
values, we have to find the configuration which minimizes the thermodynamic potential;I
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where
H ⌘ 1
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0 dz denotes an averaging over one period. In the second equality, we have used identities [13–15]
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where 0 denotes the z derivative such as M 0
= @

z

M , and we have also done partial integration. Since q is a function
of ⌫ through the relation (26),

H
⌦GL[M0] is a function of ⌫ only.

In fig. 1, we show the phase diagram of the GL expanded NJL model (22) with the kink crystal condensation.
To plot the phase diagram, we numerically find the minimum of (28). The Matsubara sums in ↵

n

have been done
analytically and we have numerically taken the momentum integrals. To regularize the UV divergence, we have



Phonon fluctuation

• f1, f2,…, h2 are periodic functions sharing the same period with M0.

• Since M0 realises the global minimum of the GL potential,

7

In fig. 2, we show the order parameter averaged over one period;

hM2i ⌘
I

M2 , (31)

and frequency of the real kink crystal condensation at T = 70 [MeV] and T = 10 [MeV]. Both phase transitions (from
the kink crystal phase to the homogeneous and symmetric phase) are of second order. However the mechanism is
different at each phase boundary. At the small µ phase boundary (homogeneous - kink crystal), the wave number
changes from zero to finite. On the other hand, at the large µ phase boundary (kink crystal - symmetric), the
amplitude of the order parameter becomes zero with keeping the wave number finite. We confirmed that M and
! show the same behavior at all the phase boundaries regardless of temperature. This is also consistent with the
previous work with the non-expanded potential [3].

B. Phonon mode

We would like to derive a free energy of the phonon which is associated with the translation symmetry in the real
kink crystal phase. Substituting
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where f1, f2, g1, g2 , h1, h2 are functions of z defined as

f1 = 2(↵4 + 10↵6M
2
0 )(M

0
0)

2
+ 4↵6

�
(M 00

0 )
2 � 2M 0

0M
000
0

�
f2 = 2↵6(M

0
0)

2

g1 = 2(↵4 + 10↵6M
2
0 )(M

0
0)

2 � 4↵6M
0
0M

000
0

g2 = 2↵6(M
0
0)

2 , h1 = 4↵6M
0
0M

00
0 , h2 = 2↵6(M

0
0)

2 .

(38)

The shapes of the order parameter and some of the coefficient functions at (T, µ) = (70, 286.0) [MeV] and (T, µ) =
(70, 286.5) [MeV] in fig. 3. Obviously the functions share the same period with the order parameter. As proven in the
Appendix. A, as a consequence of the fact that M0 realizes the global minimum of the thermodynamic potential (28),
the average of g1 over one period vanishes; I

g1(z) = 0 . (39)

The property of the phonon fluctuaion on the real kink crystal condensation is determined by the following eigenvalue
equation,
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⌦GL[M0(z + u(x))] = ⌦GL[M0] +�⌦GL +O[u3]
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FIG. 3. Order parameter M0 and the coefficient functions f1 and g1 at (T, µ) = (70, 286.0)[MeV] (left) and (T, µ) =
(70, 286.5)[MeV] (right). All functions are normalized by the cut off parameter ⇤ with appropriate dimensions.

The eivenlalue equation leads toh
�@

z

(f1@z) + @2
z

(f2@
2
z

)� g1r2
? + g2r4

? � h0
1r2

? +r2
?
�
h2, @

2
z

 
+

i
u = Eu (42)

where {}+ denotes the anti-commutation relation and
�
h2, @

2
z

 
+
u = h2@

2
z

u + @2
z

(h2u). Because the operator acting
on u is a hermitian operator, the eigenvalue E is real.

Since all the coefficient functions are periodic functions sharing the same period, according to the Bloch’s theorem,
we can decompose u into the plane wave and a periodic function:

u(x) = e

i

~

k?·~x?
e

ikzz�(z) (43)

where k? and k
z

are momentums for each direction and �(z) is a periodic function with period L. Substituting (43)
into (42), we obtain the eigenvalue equation for the periodic function of �. In common with electrons in metals, the
phonon fluctuaion on the real kink crystal condensation fomrs a band structure.

FIG. 4. Band structure of the phonon at (T, µ) = (70, 286.0) [MeV]. Left: Eigenvalues for k
x

= 0. Right: Eigenvalues for
k
z

= 0. k
z

and E are normalized by the frequency of the kink crystal, (! ⌘ 2⇡
L

) and k? is normalizaed by the UV cutoff scale
⇤.
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In fig. 2, we show the order parameter averaged over one period;

hM2i ⌘
I

M2 , (31)

and frequency of the real kink crystal condensation at T = 70 [MeV] and T = 10 [MeV]. Both phase transitions (from
the kink crystal phase to the homogeneous and symmetric phase) are of second order. However the mechanism is
different at each phase boundary. At the small µ phase boundary (homogeneous - kink crystal), the wave number
changes from zero to finite. On the other hand, at the large µ phase boundary (kink crystal - symmetric), the
amplitude of the order parameter becomes zero with keeping the wave number finite. We confirmed that M and
! show the same behavior at all the phase boundaries regardless of temperature. This is also consistent with the
previous work with the non-expanded potential [3].

B. Phonon mode

We would like to derive a free energy of the phonon which is associated with the translation symmetry in the real
kink crystal phase. Substituting

M(r) = M0

�
z + u(r)

�
(32)

= M0(z) +M 0
0(z)u(r) +

1

2

M 00
0 (z)u(r)

2
+ · · · (33)

⌘ M0(z) + �M(r) (34)

into the GL potential (22) and expanding in series of u, we obtain
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] (37)

where f1, f2, g1, g2 , h1, h2 are functions of z defined as
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The shapes of the order parameter and some of the coefficient functions at (T, µ) = (70, 286.0) [MeV] and (T, µ) =
(70, 286.5) [MeV] in fig. 3. Obviously the functions share the same period with the order parameter. As proven in the
Appendix. A, as a consequence of the fact that M0 realizes the global minimum of the thermodynamic potential (28),
the average of g1 over one period vanishes; I

g1(z) = 0 . (39)

The property of the phonon fluctuaion on the real kink crystal condensation is determined by the following eigenvalue
equation,

Eu =

�H

�u
(40)

with

H =

Z
d3x

nf1(z)
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u)2 +
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+
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FIG. 3. Order parameter M0 and the coefficient functions f1 and g1 at (T, µ) = (70, 286.0)[MeV] (left) and (T, µ) =
(70, 286.5)[MeV] (right). All functions are normalized by the cut off parameter ⇤ with appropriate dimensions.

The eivenlalue equation leads toh
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where {}+ denotes the anti-commutation relation and
�
h2, @

2
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+
u = h2@

2
z

u + @2
z

(h2u). Because the operator acting
on u is a hermitian operator, the eigenvalue E is real.

Since all the coefficient functions are periodic functions sharing the same period, according to the Bloch’s theorem,
we can decompose u into the plane wave and a periodic function:

u(x) = e

i

~

k?·~x?
e

ikzz�(z) (43)

where k? and k
z

are momentums for each direction and �(z) is a periodic function with period L. Substituting (43)
into (42), we obtain the eigenvalue equation for the periodic function of �. In common with electrons in metals, the
phonon fluctuaion on the real kink crystal condensation fomrs a band structure.
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= 0. Right: Eigenvalues for
k
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In fig. 2, we show the order parameter averaged over one period;

hM2i ⌘
I

M2 , (31)

and frequency of the real kink crystal condensation at T = 70 [MeV] and T = 10 [MeV]. Both phase transitions (from
the kink crystal phase to the homogeneous and symmetric phase) are of second order. However the mechanism is
different at each phase boundary. At the small µ phase boundary (homogeneous - kink crystal), the wave number
changes from zero to finite. On the other hand, at the large µ phase boundary (kink crystal - symmetric), the
amplitude of the order parameter becomes zero with keeping the wave number finite. We confirmed that M and
! show the same behavior at all the phase boundaries regardless of temperature. This is also consistent with the
previous work with the non-expanded potential [3].

B. Phonon mode

We would like to derive a free energy of the phonon which is associated with the translation symmetry in the real
kink crystal phase. Substituting

M(r) = M0

�
z + u(r)

�
(32)

= M0(z) +M 0
0(z)u(r) +

1

2

M 00
0 (z)u(r)

2
+ · · · (33)

⌘ M0(z) + �M(r) (34)

into the GL potential (22) and expanding in series of u, we obtain
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u) +O[u3
] (37)

where f1, f2, g1, g2 , h1, h2 are functions of z defined as
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The shapes of the order parameter and some of the coefficient functions at (T, µ) = (70, 286.0) [MeV] and (T, µ) =
(70, 286.5) [MeV] in fig. 3. Obviously the functions share the same period with the order parameter. As proven in the
Appendix. A, as a consequence of the fact that M0 realizes the global minimum of the thermodynamic potential (28),
the average of g1 over one period vanishes; I

g1(z) = 0 . (39)

The property of the phonon fluctuaion on the real kink crystal condensation is determined by the following eigenvalue
equation,

Eu =

�H

�u
(40)

with

H =
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d3x
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FIG. 3. Order parameter M0 and the coefficient functions f1 and g1 at (T, µ) = (70, 286.0)[MeV] (left) and (T, µ) =
(70, 286.5)[MeV] (right). All functions are normalized by the cut off parameter ⇤ with appropriate dimensions.
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(h2u). Because the operator acting
on u is a hermitian operator, the eigenvalue E is real.

Since all the coefficient functions are periodic functions sharing the same period, according to the Bloch’s theorem,
we can decompose u into the plane wave and a periodic function:

u(x) = e

i

~

k?·~x?
e

ikzz�(z) (43)

where k? and k
z

are momentums for each direction and �(z) is a periodic function with period L. Substituting (43)
into (42), we obtain the eigenvalue equation for the periodic function of �. In common with electrons in metals, the
phonon fluctuaion on the real kink crystal condensation fomrs a band structure.

FIG. 4. Band structure of the phonon at (T, µ) = (70, 286.0) [MeV]. Left: Eigenvalues for k
x

= 0. Right: Eigenvalues for
k
z

= 0. k
z

and E are normalized by the frequency of the kink crystal, (! ⌘ 2⇡
L

) and k? is normalizaed by the UV cutoff scale
⇤.

Energy bands of  phonon

quarticquadratic



Free energy of phonon

• We can obtain the free energy of the phonon fluctuation from the 
curvatures of the lowest energy band.

6

FIG. 4. Eigenvalues of Hu in (21) at (T, µ) = (70, 286.0)
[MeV], for k? = 0 (top) and for kz = 0 (bottom). The
domain �0.5  kz/Q  0.5 is the first Brillouin zone. kz and
E are normalized by Q and k? is normalized by the UV cutoff
scale ⇤.

that u can be decomposed into a plane wave and a peri-
odic function:

u(x) = e

ik?·x?
e

ikzz �(z) , (22)

where k? is the momentum in transverse directions, k
z

is the so-called crystal momentum, and �(z) is a periodic
function, viz. �(z + L) = �(z). Substituting (22) into
(20) yields an eigenvalue equation for �, which we have
solved numerically by way of a Fourier decomposition
�(z) =

P
n

max

n=�n

max

�
n

e

inQz /
p
L with n

max

= 20. To
see convergence, we have increased n

max

up to 30 and
confirmed that the results are unchanged.

In Fig. 4, we show the eigenvalue E numerically com-
puted for varying k

z

and k?. A marked difference from
the eigenvalue of particles in a free space is that there
are infinitely many levels for given momenta, in analogy
to electrons in metals which develop a band structure.

It is the lowest eigenvalue E
0

(red curves in Fig. 4) that
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FIG. 5. B and C at T = 70 MeV (top) and T = 10 MeV
(bottom). B and C are normalized by the UV cutoff param-
eter ⇤ with appropriate dimensions. The dotted vertical lines
mark the boundaries of the modulated phase.

pertains to the free energy of long-wavelength phonons.
By adopting a variational approach, one can rigorously
show that E

0

behaves for k
z

⇠ k? ⇠ 0 as

E
0

⇠ Bk2
z

+ Ck4? , (23)

where B and C are functions of T and µ. The absence
of the O(k2?) term in (23) is guaranteed by the property
(17). The proof of (23) is somewhat technical and is
relegated to Appendix E. Equation (23) shows that the
elastic free energy of low-energy phonons becomes

Fu

el
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1
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Z
d3x

⇥
B(@
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u)2 + C(r2

?u)
2

⇤
. (24)

One may suspect that the coefficient B would be given
by

H
f
1

. However, as shown in Appendix E, this naive
guess is incorrect: the coupling between �

0

and �
n 6=0

is
not negligible even in the perturbation series in k

z

.
In order to extract the values of B and C from eigen-

values, we have numerically fitted the curve of E
0

with

Eu
0 ⇠ Bk2z +

✓I
g1

◆
k2? + Ck4?

= Bk2z + Ck4?
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Quasi long range order

• Correlation function of the order parameter shows a pawer law.

• Exponent ηc is not universal and depends on temperature and 
parameter.
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have regularized it by introducing an two-dimensioal IR cut off with a cut off scale L?. We can regard L? as the size
of the quark matter to the perpendicular direction. At the thermodynamic limit (L? ! 1), the expectation value
diverges logarithmically. This is because the system is too soft to the perpendicular direction and easy to be excited.
The fluctuation of the phonon violate the one dimensional modulated condensation.

FIG. 6. The power of the order parameter coretation function of the kink crystal at T = 70 MeV (left) and T = 10 MeV
(right).

Under thermodynamic limit, the system is considered to show the quasi long range order behavior. For |x| � L,
the correlation function of the order parameter behaves like [22],
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where we have made a Taylor expansion of the order parameter M(x) =
P

n

M
n

e

in!(z+u(x))/
p
L and took averaged

over the thermal fluctuation of u(x). The exponent ⌘
c

is defined as

⌘
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=

!2T

8⇡
p
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. (52)

In fig. 6, we show the critical exponent ⌘
c

at T = 70 [MeV] and T = 10 [MeV]. Since B and K become zero near the
phase boundaries, ⌘

c

rapidly goes to infinity.
If the size of the system is finite, hu2i remains finite. This is true on the matter such as inside the neutron star. We

can evaluate a scale from which the thermal fluctaion becomes large. If hu2i becomes comparable with the square of
the period e.g. hu2i ⇠ L2, the fluctuation can be regared large. Using the expression (46), we can define the crossover
length (⇠?) at which the fluctuation washed out the one dimensional modulated condensation,

⇠? ⇠
p

K/B e

4⇡L2
p
BK/T (53)
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can evaluate a scale from which the thermal fluctaion becomes large. If hu2i becomes comparable with the square of
the period e.g. hu2i ⇠ L2, the fluctuation can be regared large. Using the expression (46), we can define the crossover
length (⇠?) at which the fluctuation washed out the one dimensional modulated condensation,

⇠? ⇠
p

K/B e

4⇡L2
p
BK/T (53)

Q =
2⇡

L
⌘c =

Q2T

8⇡
p
BK
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trial functions E
0

= Bk2
z

and E
0

= Ck4?, respectively,
with B and C treated as fitting parameters. Figure 5
shows B and C at T = 70 MeV and T = 10 MeV ob-
tained this way. Notably, B and C in Fig. 5 are positive
throughout the real kink crystal phase, which proves local
stability of this condensate in agreement with numerical
results in [17]. Because the phonon mode exists only in
the real kink crystal phase, it is natural that both coeffi-
cients tend to zero at the phase boundaries, although the
eigenvalues E were too small near the left boundary for
T = 70 MeV to perform a reliable fitting.

We mention that the spectrum of gapless excitations
over the same background (8) has also been worked out
in [45] with entirely different methods. However a direct
comparison is difficult owing to the fact that the model in
[45] is non-relativistic and in one space dimension, while
our model is relativistic and in three space dimensions.

C. IR divergence and quasi-long-range order

Next, we wish to evaluate the impact of thermal fluc-
tuations of phonons on the stability of the real kink
crystal. Taking the Fourier decomposition M(x) =P

n

M
n

e

inQ(z+u(x)) /
p
L, treating u in the Gaussian ap-

proximation and ignoring the pion fluctuation, we obtain
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with
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dk? k?
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dk
z
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z
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log

`?p
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(26)

where we have only incorporated the lowest Matsubara
mode since it is dominant in the infrared. The momen-
tum integral is IR divergent and is regularized by a cutoff
`?. One can regard `? as the transverse diameter of the
quark matter in a compact star. In the thermodynamic
limit `? ! 1, the condensate (25) drops to zero with
negative powers of `?, implying that the one-dimensional
modulation is wiped out by thermal fluctuations at any
low T > 0, a phenomenon known as the Landau-Peierls
instability. In fact, if the average amplitude of displace-
ment fluctuation exceeds the interval of layers, it does not
make sense to speak of a spatial long-range order. We
emphasize that this instability persists even at nonzero
quark masses, since it originates from phonons that re-
main elastic regardless of the quark masses.

In the thermodynamic limit, the system instead ex-
hibits a quasi-long-range order. Expanding M in Fourier
series and ignoring non-Gaussian effects and pion fluctu-
ations, we find that the correlation function of the order
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FIG. 6. The exponent ⌘c characterizing the algebraic decay
of the order parameter correlation function in the kink crystal
phase at T = 70 MeV (top) and T = 10 MeV (bottom). The
dotted vertical lines mark the boundaries of the modulated
phase.
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In the intermediate step we have dropped terms with

hM(z)M(0)i ⇠ z�⌘c

T = 10 MeV

hM(z)M(0)i ⇠ M2

hM(z)M(0)i ⇠ e�z

cf) hadron phase:

cf) QGP phase:



Impact of phonon fluctuation

• <u2> has a logarithmic IR divergence.

• One-dimensional modulation is violated by thermal fluctuation in 
thermodynamic limit (L⊥ -> ∞). (Landau-Peierls theorem)

Expectation value of u:

M

0 = M(z + u(x))
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In the intermediate step we have dropped terms with
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FIG. 4. Eigenvalues of Hu in (21) at (T, µ) = (70, 286.0)
[MeV], for k? = 0 (top) and for kz = 0 (bottom). The
domain �0.5  kz/Q  0.5 is the first Brillouin zone. kz and
E are normalized by Q and k? is normalized by the UV cutoff
scale ⇤.

that u can be decomposed into a plane wave and a peri-
odic function:

u(x) = e

ik?·x?
e

ikzz �(z) , (22)

where k? is the momentum in transverse directions, k
z

is the so-called crystal momentum, and �(z) is a periodic
function, viz. �(z + L) = �(z). Substituting (22) into
(20) yields an eigenvalue equation for �, which we have
solved numerically by way of a Fourier decomposition
�(z) =

P
n

max

n=�n

max

�
n

e

inQz /
p
L with n

max

= 20. To
see convergence, we have increased n

max

up to 30 and
confirmed that the results are unchanged.

In Fig. 4, we show the eigenvalue E numerically com-
puted for varying k

z

and k?. A marked difference from
the eigenvalue of particles in a free space is that there
are infinitely many levels for given momenta, in analogy
to electrons in metals which develop a band structure.

It is the lowest eigenvalue E
0

(red curves in Fig. 4) that

FIG. 5. B and C at T = 70 MeV (top) and T = 10 MeV
(bottom). B and C are normalized by the UV cutoff param-
eter ⇤ with appropriate dimensions. The dotted vertical lines
mark the boundaries of the modulated phase.

pertains to the free energy of long-wavelength phonons.
By adopting a variational approach, one can rigorously
show that E

0

behaves for k
z

⇠ k? ⇠ 0 as

E
0

⇠ Bk2
z

+ Ck4? , (23)

where B and C are functions of T and µ. The absence
of the O(k2?) term in (23) is guaranteed by the property
(17). The proof of (23) is somewhat technical and is
relegated to Appendix E. Equation (23) shows that the
elastic free energy of low-energy phonons becomes

Fu

el

=

1

2

Z
d3x

⇥
B(@

z

u)2 + C(r2

?u)
2

⇤
. (24)

One may suspect that the coefficient B would be given
by

H
f
1

. However, as shown in Appendix E, this naive
guess is incorrect: the coupling between �

0

and �
n 6=0

is
not negligible even in the perturbation series in k

z

.
In order to extract the values of B and C from eigen-

values, we have numerically fitted the curve of E
0

with



Possibilities

1) Strictly zero temperature

2) Higer dimensional modulations

3) External magnetic field 

4)Finite volume system 
divergence is at most logarithmic to volume. 
We roughly estimated that, at T = 10 MeV, one-dimensional 
condensation is stable up to L ~10 Km. 

We can evacuate from the large thermal phonon fluctuation if



Pion fluctuation

• We can repeat the same analyses to the pion fluctuation.

• Pion has an anisotorpy in the inhomogeneous phase but dispersion 
is still quadratic.
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FIG. 7. The crossover scale and period of the kink crystal at T = 70 MeV (left) and T = 10 MeV (right).

In fig. 7, we show the period and crossover scale at T = 70 [MeV] and T = 10 [MeV]. The crossover scale changes from
the order of fm to the microscopic size, while the period remains order of fm at almost all the real kink crystal phase.
Only at smaller µ phase boundary (homogeneous-inhomogeneous), the period of the real kink crystal condensate
rapidlys changes from infinity to order of fm. This behavior is not visible in the figure.

At high temperature, the system is easy to excite the crossover length is comparable with the period. The one
dimensional real kink crystal phase seems to be violated by the thermal fluctuation of the phonon. However at
low temperature, the situation is different. As show in the right panel of fig. 7, there is a region at which ⇠? is
macroscopic i.e, order of km, while L remains order of fm. Even the size of the matter is microscopic, the real kink
crystal condensation can be survive at temperatrue order of few MeV.

C. Pions on the kink crystal background

Next we proceed to the inclusion of massless pions that stem from the spontaneous breaking of SU(2)R ⇥ SU(2)L

to SU(2)V. Following [3, 4], we define S(r) = h  (r)i and P
a

(r) = h i�5⌧a (r)i for a = 1, 2, and 3. Nickel has
shown [3, 4] that, assuming a one-dimensional modulation, the (3 + 1)-dimensional GL Lagrangian for the complex
field M(r) ⌘ �2G[S(r) + iP3(r)] (with G the coupling constant in the NJL model) can be obtained from that of the
chiral GN2 model [13–15], leading to the result

⌦GL(M) = ↵2|M |2 + ↵4

�|M |4 + |rM |2 
+ ↵6

�
2|M |6 + 8|M |2|rM |2 + 2Re

⇥
(rM)

2M⇤2⇤
+ |�M |2 , (54)

where P1(r) = P2(r) = 0 is assumed and the constant term is omitted for simplicity. We can include P1 and P2 with
the GL expansion of full symmetry. We derived it in appendix (C3).

We would like to repeat the procedure that we have utilised to the phonon. Substituting

M(r) = M0e
i⇡0

= M0(z) + iM0⇡0 + · · ·
⌘ M0(z) + �M(r)

(55)

into (22) and expanding in series of ⇡0, we obtain
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band E
⇡,0 (red curves in fig. 8). Using the variational method, we can also solve the eigenvalue equation (60) for the

low-lying band. The solution for the low-lying energy band around k? = kk = 0 is

E
⇡,0 ⇠ F 2

?k
2
? + F 2

k k
2
z

(62)

where

F 2
? ⌘

I
g1⇡ (63)

and F 2
k is a positive constant. To derive (63), we used the general soulution in Appendix B. Because, for pion,H

g1 6= 0, there appears the quadratic term of k? in (63). The pion contribution to the free energy of the real kink
crystal phase is given by

F⇡

el =
1

2

Z
d3x

h
F 2
k (@z⇡0)

2
+ F 2

?(r?⇡0)
2
i
. (64)

Pion fluctuation on the real kink crystal condensation is anisotripic but the dipspersion is quadratic for each direction.
Therefor the thermal fluctuation asosciated with the pion does not cause any infrared divergence and does not break
the long range order.

FIG. 9. F 2
? and F 2

k at T = 70 MeV (left) and T = 70 MeV (right). F 2
? and F 2

k are normalized by ⇤ with appropriate
dimensions.

In fig 9, we show F 2
? and F 2

k at T = 70 [MeV]. We fit the numerical result of E
⇡,0 with the trial functions

E
⇡,0 = F 2

?k
2
? and E

⇡,0 = F 2
k k

2
z

, respectively. In the homogeneous phase, the system is isotropic and F 2
? = F 2

k . In
the kink crystal phase, the system is asymmetric and the coeffecints have a difference. In our calculation, in the kink
crystal phase, F 2

k > F 2
? is held at any temperature and chemical potential.

IV. CONCLUSION

Conclusion is placed here.
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Summary

• We evaluate properties of “phonon” and “pion” fluctuations on 
inhomogeneous chiral condensate.

• Pion and phono have strong anisotropic features.

• One-dimensional modulation is violated by the thermal fluctuation of 
phonon (Landau-Peierls theorem).

• Inhomogeneous phase becomes the quasi-long range order phase. 
We evaluate the critical exponent in this phase.


