Diffusion of non-Gaussian fluctuations of conserved charges

Masakiyo Kitazawa (Osaka U.)

MK, Asakawa, Ono, Phys. Lett. B728 (2014) 386-392; MK, Nucl. Phys. A942 (2015) 65-96; Y. Ohnishi et al., in prep.

『熱場の量子論』, YITP, 2015/9/1

Beam-Energy Scan

Non-Gaussian Cumulants @ BES

STAR, CPOD (Nov., 2014)

$\Delta\eta$ Dependence @ ALICE

Time Evolution of Fluctuations

Time Evolution of Fluctuations

Particle # in $\Delta \eta$

continues to change until kinetic freezeout due to diffusion.

) changes due to a conversion y → η at kinetic freezeout

"Thermal Blurring"

Thermal Blurring

Thermal Blurring

Under Bjorken picture,

coordinate-space rapidity of medium

momentum-space rapidity

coordinate-space rapidity of individual particles

Centrality Dependence

Is the centrality dependence understood solely by the thermal blurring at kinetic f.o.?

Centrality Dependence

Assumptions:

- Centrality independent cumulant at kinetic f.o.
- Thermal blurring at kinetic f.o.

Centrality dep. of blast wave parameters can qualitatively describe the one of $\langle \delta N_{\rm Q}^2 \rangle$

Diffusion + Thermal Blurring, Non-Gaussian Cumulants

 $<\delta N_{0}^{4} > @ LHC ?$

 $<\delta N_{0}^{4} > @ LHC ?$

How to Introduce Non-Gaussianity?

Stochastic diffusion equation

$$\partial_{\tau} n = D \partial_{\eta}^2 n + \partial_{\eta} \xi(\eta, \tau)$$

Fluctuation of *n* is Gaussian in equilibrium

How to Introduce Non-Gaussianity?

Stochastic diffusion equation

$$\partial_{\tau} n = D \partial_{\eta}^2 n + \partial_{\eta} \xi(\eta, \tau)$$

Fluctuation of *n* is Gaussian in equilibrium

Choices to introduce non-Gaussianity in equil.:

 \square *n* dependence of diffusion constant D(n)

colored noise

discretization of n our choice

REMARK: Fluctuations measured in HIC are almost Poissonian.

A Brownian Particle's Model

Hadronization (specific initial condition)

Initial distribution + motion of each particle \rightarrow cumulants of particle # in $\Delta \eta$

A Brownian Particle's Model

Hadronization (specific initial condition)

Initial distribution + motion of each particle → cumulants of particle # in $\Delta\eta$

Baryons in Hadronic Phase

Diffusion + Thermal Blurring

Total diffusion:
$$P(x - x'') = \int dx' P_1(x - x') P_2(x' - x'')$$

□ Diffusion + thermal blurring = described by a single P(x)□ Both are consistent with Gaussian → Single Gaussian

$\Delta\eta$ Dependence: 4th order

MK, NPA (2015)

Characteristic $\Delta \eta$ dependences!

$\Delta\eta$ Dependence: 4th order

MK, NPA (2015)

4th order : Large Initial Fluc.

MK, NPA (2015)

Initial Condition $D_4 = \frac{\langle Q_{(\text{net})}^4 \rangle_c}{\langle Q_{(\text{tot})} \rangle} = 4$ $b = \frac{\langle Q_{(\text{net})}^2 Q_{(\text{tot})} \rangle_c}{\langle Q_{(\text{net})} \rangle}$ $c = \frac{\langle Q_{(\text{tot})}^2 \rangle_c}{\langle Q_{(\text{tot})} \rangle}$ $D_2 = \frac{\langle Q_{(\text{net})}^2 \rangle_c}{\langle Q_{(\text{tot})} \rangle} = 1$

 $D \sim M^{-1}$

$\Delta\eta$ Dependence @ STAR

Non-monotonic dependence on $\Delta \eta$?

Summary

Plenty of information in $\Delta\eta$ and centrality dependences of various cumulants

 $\langle N_Q^2 \rangle_c, \ \langle N_Q^3 \rangle_c, \ \langle N_Q^4 \rangle_c, \ \langle N_B^2 \rangle_c, \ \langle N_B^3 \rangle_c, \ \langle N_B^4 \rangle_c, \ \langle N_S^2 \rangle_c, \ \cdots$

and those of non-conserved charges, mixed cumulants...

With ∆η dep. we can explore
> primordial thermodynamics
> non-thermal and transport property
> effect of thermal blurring

Future Studies

D Experimental side:

- rapidity window dependences
- baryon number cumulants
- consistency between RHIC and LHC

□ Theoretical side:

- > rapidity window dependences in dynamical models
- description of non-equilibrium non-Gaussianity
- accurate measurements on the lattice

■Both sides:

Compare theory and experiment carefully

> Do not use a fixed $\Delta \eta$ cumulant for comparison!!!

Very Low Energy Collisions

Large contribution of global charge conservationViolation of Bjorken scaling

Fluctuations at low \sqrt{s} should be interpreted carefully! Comparison with statistical mechanics would not make sense...

Initial Condition @ Hadronization

Hadronization (initial condition)

Boost invariance / infinitely long system
 Local equilibration / local correlation

distribution in rapidity space

• flat freezeout surface

Time Evolution of Fluctuations

Time Evolution of Fluctuations

Particle # in $\Delta \eta$

- continues to change until kinetic freezeout due to diffusion.
- ② changes due to a conversion y → η at kinetic freezeout

"Thermal Blurring"