

## 4体フェルミ相互作用模型 の正則化と 有限温度密度相構造

# 稲垣 知宏 広島大学木村 大自 宇部高専幸山 浩章 台湾大学

H. Kohyama, D. Kimura, and T. I., Nucl. Phys. B896 (2015) 682.

基研研究会「熱場の量子論とその応用」2015/9/1





- 3次元カットオフと次元正則化の比較
  - ・中性子星の質量と半径: T. Fujihara, D. Kimura, T. I., and A.Kvinikhidze, Phys. Rev. D79 (2009) 096008.
  - メソン9重項: T. I., D. Kimura, H. Kohyama, and A. Kvinikhidze, Phys. Rev. D83 (2011) 034005.
- 正則化に依らない解析

  - Next to leading order : T. I., D. Kimura, and H. Kohyama, Int. J. Mod. Phys. A29 (2014) 1450048-1-1450048-9.
- いろいろな正則化での解析
  - ・理論の相構造: H. Kohyama, D. Kimura, and T. I., Nucl. Phys. B896 (2015) 682.



- 4体フェルミ相互作用模型
- いろいろな正則化
- 有限温度・密度効果
- まとめ

関連レビュー:

U. Vogl, W. Weise, Prog. Part. Nucl. Phys. 27 (1991) 195.
S.P. Klevansky, Rev. Mod. Phys. 64 (1992) 649.
T. Hatsuda, T. Kunihiro, Phys. Rep. 247 (1994) 221.
M. Buballa, Phys. Rep. 407 (2005) 205.
M. Huang, Int. J. Mod. Phys. E 14 (2005) 675.

### QCDの低エネルギー有効理論 4体フェルミ相互作用模型



## 4体フェルミ相互作用模型

- Nambu-Jona-Lasinio model (1960, 1961)  $\mathcal{L} = \sum_{i=1}^{N_f} \bar{\psi}_i \left( i \gamma^\mu \partial_\mu - m_i \right) \psi_i$   $+ G \left[ \left( \sum_{i=1}^{N_f} \bar{\psi}_i \psi_i \right)^2 + \sum_{a=1}^{N_f^2 - 1} \left( \sum_{i,j=1}^{N_f} \bar{\psi}_i i \gamma_5 \tau_{ij}^a \psi_j \right)^2 \right]$
- Dynamical symmetry breaking for m = 0  $SU_L(N_f) \otimes SU_R(N_f) \otimes U_A(1) \otimes U_B(1)$  $\rightarrow SU_{L+R}(N_f) \otimes U_B(1)$



## 4体フェルミ相互作用模型

- Similar symmetry property with QCD
- A simple model of the chiral symmetry breaking
- 1/N expansion is useful to evaluate nonperturbative phenomena.





## くりこみ可能性

Mass dimension

- Fermion field: (D-1)/2
- Four-fermion interaction: 2(D-1)
- Four-fermion coupling: dim(G)=D-2(D-1)=2-D

D=2: dim(G)=0, Renormalizable.
D>2: dim(G)<0, Non-renormalizable.</li>
D=3: Renormalizable in the sense of1/N expansion. T. Eguchi, P.R. D17 (1978) 611, K. Shizuya, P.R. D21 (1980) 2327.





#### Four Fermion interaction $\rightarrow$ dim. 2(D-1) operator

#### Non-renormalizable in four dimensions

#### The model depends on regularization methods.

### カットオフ、Pauli-Villars, Proper-time, 次元正則化 いろいろな正則化



## カットオフ正則化

・発散する積分の上限を切断

o 4D cut

$$\int_0^\infty \frac{d^4k}{(2\pi)^4} \to \frac{1}{(2\pi)^4} \int_0^\Lambda dk \int d\Omega_4$$

o 3D cut

$$\int_0^\infty \frac{d^4k}{(2\pi)^4} \to \int_0^\infty \frac{dk_0}{(2\pi)^4} \int_0^\Lambda dk \int d\Omega_3$$

並進不変性を壊すが、カイラル対称性とは矛盾しない 温度、密度が∧に近づくと、切断の寄与が大きくなる?

Contractor and the second



## Pauli-Villars正則化

・仮想的な重い質量粒子の伝搬関数を引き去る

$$\frac{1}{k^2 - m^2} \rightarrow \frac{1}{k^2 - m^2} - \sum_i \frac{a_i}{k^2 - \Lambda_i}$$

a<sub>i</sub>は発散が相殺するように選ぶ カウンター項がカイラル対称性を破る 温度、密度がΛ<sub>i</sub>に近づくと、切断の寄与が大きくなる?



## Proper-time正則化

• Proper-time積分を利用して収束因子を導入

$$\begin{split} \frac{1}{(k^2 - m^2)^n} &\to \frac{1}{(n-1)} \int_{1/\Lambda_{PT}^2}^{\infty} d\tau \tau^{n-1} e^{-(k^2 - m^2)\tau} \\ \theta \\ \bar{k} \\ \bar{k} \\ \bar{k} \\ - m^2 &\to \int_{1/\Lambda_{PT}^2}^{\infty} d\tau e^{-(k^2 - m^2)\tau} \\ &= \frac{1}{k^2 - m^2} e^{-(k^2 - m^2)/\Lambda_{PT}^2} \\ \bar{k} \\ \bar{k}$$

## h

## 次元正則化

発散する積分の次元を4からDに解析接続

| $\int^{\infty}$ | $d^4k$                | $\int^{\infty}$ | $d^D k$               |
|-----------------|-----------------------|-----------------|-----------------------|
| $\int_{0}$      | $\overline{(2\pi)^4}$ | $\int_{0}$      | $\overline{(2\pi)^D}$ |

ループ積分の次元のみ変更して、ガンマ行列の計算等は 4次元のまま行う。 ほとんどの対称性を保持



相構造の解析

・意図しない対称性の破れを導入してしまう可能性









## パラメータの決定



# 2フレーバーで解析してみる 有限温度・密度効果

## h

## 虚時間形式

• 置き換えルール

 $ix_0 \to x_4 \in [0,\beta),$ 

$$k^{0} \rightarrow i\omega_{n}$$
,  $\omega_{n} = \begin{cases} 2n\pi T & : \text{ boson} \\ (2n+1)\pi T & : \text{ fermion} \end{cases}$ 

$$\int \frac{d^4k}{(2\pi)^4i} \to T \sum_{n=-\infty}^{\infty} \int \frac{d^3\vec{k}}{(2\pi)^3}$$





## 有限温度・密度による寄与は発散しないので、ゼロ温度、密度で正則化できていれば十分。

#### 松原モードの和を途中できると、温度に比例した 質量を持つ粒子の伝搬関数の和になってしまう。

#### 有限温度・密度の寄与には正則化を適用しない?



## 臨界温度、化学ポテンシャル

- 有限温度効果を正則化しない場合
- T=µ=0でm\*=311MeVとなるパラメータで比較



### T-μ相構造

- 有限温度効果を正則化しない場合
- T=µ=0でm\*=311MeVとなるパラメータで比較



Critical end point の位置

| 正則化       | $\mu_{cp}$ | T <sub>cp</sub> |  |
|-----------|------------|-----------------|--|
| 3D cutoff | 330MeV     | 25.0MeV         |  |
| 4D cutoff | 333        | 46.8            |  |
| Pro. time | 330        | 26.0            |  |
| Dim. reg. | 289        | 74.7            |  |

## h

## 臨界温度、化学ポテンシャル

- 有限温度効果も正則化適用
- T=µ=0でm\*=311MeVとなるパラメータで比較



## T-µ相構造

- 有限温度効果も正則化適用
- T=µ=0でm\*=311MeVとなるパラメータで比較



Critical end point の位置

| 正則化       | $\mu_{cp}$ | T <sub>cp</sub> |  |
|-----------|------------|-----------------|--|
| 3D cutoff | 330MeV     | 25.0MeV         |  |
| Pro. time | 332        | 23.2            |  |



### |T-μ相構造

- 有限温度効果を正則化しない場合
- $\mu=0$ でT<sub>c</sub>=175MeVとなるパラメータで比較



## T-μ相構造

- 有限温度効果も正則化適用
- $\mu=0$ でT<sub>c</sub>=175MeVとなるパラメータで比較





まとめ

カットオフの寄与がより鮮明になると考えられる、高温、 高化学ポテンシャルでの2フレーバー4体フェルミ相互作 用模型について、いろいろな正則化で相構造を解析。

- インプット:パイオン質量、崩壊定数、 *π*→2γ (次元正則化)
- ・ パラメータ: クォーク質量以外を、上記で決定
- 有限温度効果は松原形式で導入し、正則化を適用しない 場合とした場合で解析

H. Kohyama, D. Kimura, and T. I., Nucl. Phys. B896 (2015) 682.



## 有限温度・密度の現象をよく表すのは? 3フレーバーの導入 3体力(バリオン)の導入 カラー超伝導の導入 重イオン衝突での観測可能性検討 天体現象等での観測可能性検討

0

### 正則化パラメータの決定 模型のパラメータ





- Current quark mass
   *m*<sub>u</sub>, *m*<sub>d</sub>,...
- Constituent quark mass
   Gap equation at the large N limit (2 flavor case)





## 動的対称性の破れ

クォーク、反クォーク対の凝縮
 At the large N limit





## パイオンの質量と崩壊定数

パイオン伝搬関数

 $m_{\rm u}^{*}, m_{\rm d}^{*}$ 

- 崩壊定数
  - $p^{\mu} f_{\pi} = \frac{1}{2} \int \frac{d^4 k}{i(2\pi)^4} \operatorname{tr} \left[ \gamma^{\mu} \gamma_5 g_{\pi q q} S(k) \gamma_5 S(k-p) \right]$



## 4次元カットオフ正則化

| $m_u$ | Λ    | $G \cdot 10^{-6}$ | $m^*$ | $\langle \bar{u}u \rangle^{1/3}$ |
|-------|------|-------------------|-------|----------------------------------|
| 3.0   | 1397 | 1.80              | 198   | -300                             |
| 5.0   | 1027 | 3.64              | 242   | -253                             |
| 8.0   | 768  | 8.88              | 369   | -216                             |



## 3次元カットオフ正則化

| $m_u$ | Λ   | $G \cdot 10^{-6}$ | $m^*$ | $\langle \bar{u}u \rangle^{1/3}$ |
|-------|-----|-------------------|-------|----------------------------------|
| 3.0   | 942 | 2.00              | 220   | -300                             |
| 4.0   | 781 | 3.09              | 255   | -272                             |
| 5.0   | 665 | 4.71              | 311   | -253                             |
| 5.5   | 609 | 6.26              | 375   | -245                             |





## Pauli-Villars正則化

| $m_u$ | Λ    | $G \cdot 10^{-6}$ | $m^*$ | $\langle \bar{u}u \rangle^{1/3}$ |
|-------|------|-------------------|-------|----------------------------------|
| 3.0   | 1420 | 1.77              | 195   | -300                             |
| 5.0   | 1071 | 3.45              | 229   | -253                             |
| 8.0   | 853  | 6.78              | 283   | -216                             |
| 10.0  | 778  | 9.64              | 312   | -198                             |



## Proper-time正則化

| $m_u$ | Λ    | $G \cdot 10^{-6}$ | $m^*$ | $\langle \bar{u}u \rangle^{1/3}$ |
|-------|------|-------------------|-------|----------------------------------|
| 3.0   | 1464 | 1.61              | 178   | -300                             |
| 5.0   | 1097 | 3.07              | 204   | -253                             |
| 8.0   | 849  | 5.85              | 245   | -216                             |
| 10.0  | 755  | 8.13              | 265   | -198                             |



## 次元正則化

| $m_u$ | D    | $GM_0^{4-D} \cdot 10^{-4}$ | $m^*$ | $\langle \bar{u}u \rangle^{1/3}$ |
|-------|------|----------------------------|-------|----------------------------------|
| 3.0   | 2.37 | -113.4                     | -570  | -299                             |
| 4.0   | 2.47 | -87.9                      | -543  | -272                             |
| 5.0   | 2.56 | -58.7                      | -519  | -253                             |
| 8.0   | 2.78 | -24.1                      | -459  | -217                             |

