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Spontaneous symmetry breaking and collective modes

Nambu-Goldstone mode - massless phase mode

Higgs mode - massive amplitude mode
pions, magnons, phonons, Bogoliubov mode in BECs …

in Standard Model, SCs, SFs, magnets, CDW materials …

Higgs mode

NG mode
    NG

mode

Higgs 
mode

F (�)

Re(�)
Higgs and NG modes are ubiquitous associated with 
spontaneous symmetry breaking.

- growing interest in Higgs modes in condensed matter physics

Y. Nambu

J. Goldstone

P. Higgs

Im(�)



Observation of the Higgs mode in the vicinity of 
the SF-MI phase transition point in 2d

Cold bosons in an optical lattice - Higgs mode excited 
by modulating lattice depth in time

Nature 487, 454 (2012)



Superfluid-Mott insulator transition
Bose-Hubbard model

J � U

J � U

J : hopping : on-site interaction

superfluid

Mott insulator

J/U can be tuned by light intensity

M.Greiner et al., Nature 415, 39 (2002)
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Effective low-energy theory

Time-dependent Ginzburg-Landau eq.

In the vicinity of the 2nd order SF-MI transition

Deep in the SF regime

Gross-Pitaevskii eq.

i
��

�t
= ��

2

2m
� + g|�|2�

= NG (Bogoliubov) mode

J � U

amplitude and phase modes have 
the same gapless dispersion

No Higgs mode C. Varma, JLTP (2002)
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Higgs and NG modes at the SF-MI transitions

TDGL eq.

• Emergent Lorentz invariance

particle-hole symmetric
TDGL eq. is invariant under
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Effects of disorder
• Disorder plays a crucial role in various condensed 

matter systems - Anderson localization, Bose glass, .. 
• Elementary excitations localized around disorder 

potentials - Andreev bound states in SCs, edge 
modes and Majorana bound states in topologically 
non-trivial systems (TIs, TSCs), … 

• We study transport properties of collective modes 
through a potential barrier - the simplest disorder.
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Figure 1 | Broken U(1)-symmetry phase and quantumMonte Carlo calculation of the Higgs conductivity. a, When symmetry is broken, the potential
acquires a Mexican hat shape, with a circle of potential minima along the brim (black solid circle). Transverse modes of the order parameter  =Aei' along
the brim (red line) are Nambu–Goldstone (phase) modes, and longitudinal modes (blue line) are Higgs (amplitude) modes associated with a finite energy.
In superconductivity, the potential corresponds to the free energy. b, The Higgs mode gives rise to low-frequency conductivity (in units of 4e2/h) that
grows as disorder p (fraction of disconnected superconducting islands) is increased and remains finite through the quantum phase transition (orange line).
At the quantum critical point, pc =0.337, the superfluid density, ⇢s, in the superconducting phase vanishes and the quasiparticle gap,�, remains finite,
whereas in the insulator !pair, which is the energy to insert a Cooper pair to the insulator, goes to zero. Results for specific disorder (blue, green and red
dashed lines) are compared to experiment (see Fig. 3). For details of the calculation see ref. 25.

Assuming the presence of a Higgs mode in the superconducting
thin film, what would be the most suited experimental quantity
to detect it? The Higgs mode is a finite-energy oscillation
of the order parameter magnitude | |. It can be probed
by the dynamical conductivity �̂ (!), which depends on
the current–current correlation function h[j(t), j(0)]i. At low
temperatures, the current is dominated by the Cooper pair current
j⇠(2e)Im{ ⇤r }'(2e)| |2r', where ' is the local phase field
and e the elementary charge. As a result, the conductivity depends
on a convolution of the amplitude and phase fluctuations.

How would the Higgs mode contribute to the dynamical
conductivity? Theoretically it is predicted to give rise to excess
conductivity at sub-gap frequencies12, which we will refer to as
Higgs conductivity, �̂H(!), in the remainder of the paper. In non-
disordered systems13 �H

1 (!) shows a hard gap at frequencies similar
to the superconducting gap, !⇠ 2�/h̄, that is associated with the
energy scale of the Higgs mode, mH. This gap becomes softer as
the system approaches the QPT, reaching zero at the critical point.
Recently, Swanson and collaborators25 studied the e�ect of disorder
on the dynamical conductivity across the superconductor–insulator
QPT, employing quantumMonte Carlo methods, and extracted the
excess low-frequency contribution (see Fig. 1b). The calculations
show that the presence of disorder suppresses mH such that �H

1 (!)
remains finite across the QPT. This excess conductivity adds to
the conductivity stemming from the superfluid condensate and the
quasiparticle dynamics, so that one can write

�̂ (!)=�1(!)+ i�2(!)=A⇢s�(!)+ �̂ qp(!)| {z }
�̂BCS(!)

+�̂H(!) (1)

where ⇢s is the superfluid density and A is a constant26.
To experimentally search for the contribution of the Higgs mode,

we have studied disordered superconducting films of NbN and
InO by means of THz spectroscopy. Since the superconducting
energy gaps are of the order of 0.1–1 THz, optical spectroscopy
in this regime is an alternative method to tunnelling spectroscopy
for the measurement of 2�. Most importantly, unlike tunnelling,
which measures the density of states of the quasiparticles, optical
spectroscopy probes a complex response function, �̂ exp, that
combines those from the superfluid condensate, the quasiparticle

dynamics and collective modes, see equation (1). One can
decompose the optically measured conductivity into the regular
BCS contribution and the contribution of the collective excitations.
The first contribution is modelled by the Mattis–Bardeen theory
for ordinary superconductors using our tunnelling spectroscopy
results as input to fix the absolute numbers. The di�erence
from the experimental data determines the Higgs mode, simply
by calculating

�H
1 (!)=� exp

1 (!)�� BCS
1 (!) (2)

We have measured the complex transmission coe�cient of
several thin-film samples with di�erent degrees of disorder using
Mach–Zehnder interferometry. Measurements were performed in
the frequency domain between 0.05 and 1.2 THz (corresponding to
1.7–40 cm�1 or 0.18–5meV) for temperatures above and well below
Tc. From this we directly obtain the real and imaginary parts, � exp

1
and � exp

2 , of the dynamical conductivity, in a individual manner
without Kramers–Kronig analysis. According to Mattis–Bardeen
theory, �1 is minimal at a frequency ⌦ that corresponds to twice
the superconducting energy gap, 2�. Furthermore, the superfluid
density is related to �2(!) as

⇢s = �2(!)m!
e2

(3)

where m is the electron mass and e is the elementary charge. This
robust approach is well established to study superconducting thin
films. For more details see Methods and, for example, refs 26–29.
Figure 2b,e shows the real part of the conductivity � exp

1 (!) for
modestly (Tc = 9.5 K) and strongly (Tc = 4.2 K) disordered NbN
in the normal state and well below Tc, together with the fits to
the Mattis–Bardeen prediction for the disordered regime30. In both
cases, � exp

1 (!) is featureless in the normal state, following a simple
Drude behaviour with a scattering rate well above the THz range,
whereas � exp

1 (!) is strongly suppressed in the superconducting state.
The ordered sample is fitted perfectly by theMattis–Bardeen theory.
The onset of the high-frequency upturn coincides with twice the
energy gap, �t, obtained by tunnelling spectroscopy performed on
a similar sample24, as seen in Fig. 2a. The situation is remarkably
di�erent for the strongly disordered sample. Here the decrease
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(2015)
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Disorder in the BH model

Two kinds of disorder in the BH model
1) diagonal disorder: inhomogeneous on-site potential Vi

2) off-diagonal disorder: inhomogeneous hopping amplitude Jij

Jij = J + J �
ij

Bose-Hubbard model

M. P. A. Fisher, PRB 40, 546 (1989)
µi = µ0 � Vi

N. Prokof’ev and B. Svistunov, PRL 92, 15703 (2004)
P. Sengupta and S. Haas, PRL 99, 050403 (2007)

• We propose to introduce two kinds of external potential that tune 
the two kinds of disorder independently in cold-atom experiments.



2) inhomogeneous hopping amplitude
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2) inhomogeneous hopping amplitude
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leading contribution to the linear term vr(x) = �2J �(x)

TDGL equation including effects of the potential
• We assume absence of the 1st order time-derivative term 

far from the potential barrier: particle-hole symmetry

 : a standard potential term that does not break p-h symmetry

�W0
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TDGL equation including effects of the potential



Effective 1D setting

we assume delta-function potentials :

ivK(x)
��

�t
�W0

�2�

�t2
=

�
��

2�

2m�
+ r0 + vr(x) + u0|�|2

�
�

: coherence length

vK = VK�(x) vr = Vr�(x)

Potentials varying in the order of lattice 
spacing d can be well approximated by 
the delta-function potentials because of
� � d

ivK(x)
��

�t
� �2�
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2
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near the phase boundary



Linearized TDGL equation

we assume fluctuations of the order parameter only in the x direction

Static eq. (same as the static GP eq.)
no effect of

vK(x)

NG:

Higgs:

Higgs and NG modes are locally coupled via vK(x)

ivK
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�t
� �2�

�t2
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�
��
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2
� 1 + vr + |�|2

�
�



Higgs bound states
Static solution for 

vK(x) = 0

�0(x) = tanh(|x| + x0)

we set

vr(x) = Vr�(x)

decoupled Higgs and NG mode due to p-h symmetry 

Bound-state solutions of amplitude fluctuation T(x) below 
the bulk Higgs gap due to the deep condensate potential

= Shroeinger eq.
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Scattering of collective modes

rh(3�(x)2 + 3�t�(x) + �2
t � 1)e�tx

th(3�(x)2 + 3�t�(x) + �2
t � 1)e��tx

T (x) =
�

(x < 0)

(x > 0)

tng(�(x)� iks)eiksx

(�(x) + iks)eiksx + rng(�(x)� iks)e�iksx

S(x) =

(x < 0)

(x > 0)
Incident Reflected

Transmitted

�
���

���
ks =

�
2E

NG:

Higgs:

�t =
�

4� 2E2

Scattering of NG modes with energy 
below the bulk Higgs gap  
incident to the potential barriers

E < � =
�

2

vK = VK�(x) vr = Vr�(x)

Boundary condition at x=0 

�(x) = tanh(|x| + x0)

decay at infinity



Tunneling property of NG modes
T (E) =

1
1 + 2E2

(2E2+1)2 Ve�(E)2

Ve�(E) = (1� V 2
Kf(E))Vr
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Effective potential:

Transmission probability:

Perfect transmission of NG 
mode in the low energy limit
anomalous tunneling

Kovrizhin, Phys. Lett. A, 287, 392 (2001)

Fano resonance

Characteristic asymmetric 
peak near the energy of 
the Higgs bound state E+

E < �

Kagan, et al., PRL 90, 130402 (2003)

(Vr, VK) = (4, 2)

(Vr, VK) = (4, 4)



Tunneling property of NG modes
T (E) =

1
1 + 2E2

(2E2+1)2 Ve�(E)2

Ve�(E) = (1� V 2
Kf(E))Vr

Effective potential:

Transmission probability:

� Vr �
�V 2

K

E � E+
Vr

direct scattering
resonant scattering involving excitation 
of the even Higgs bound state

Ve� ��

E � E+

1� V 2
Kf(E) = 0

T � 0

Ve� = 0 T = 1
destructive interference 

Interference between directly scattered waves within continuum 
and resonantly scattered waves mediated by discrete states 
- Fano resonance

f(E � E+)��
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1
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The asymmetric peak is manifestation of the Fano resonance 
of the NG mode mediated by the even Higgs bound state.



Summary
• TDGL eq. including effects of two kinds of potential 

barriers - inhomogeneous on-site potential and 
hopping amplitude.

ivK(x)
��

�t
�W0

�2�

�t2
=

�
��

2�

2m�
+ r0 + vr(x) + u0|�|2

�
�

• Localized Higgs bound states below 
the bulk Higgs gap

• Fano resonance of NG mode 
mediated by the Higgs bound states
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Outlook Higgs bound states in other 
condensed matter systems, 
e.g. disordered SCs
Sherman et al., Nat. Phys. (2015)
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Higgs modes in condensed matter physics

- First observation of Higgs mode! 
Raman spectroscopy in NbSe2

NbSe2: CDW transition at 40K and SC transition at 7.2 K

A new peak at the frequency twice of 
the SC gap arises below SC Tc. 

Littlewood and Varma developed a 
microscopic theory by extending the 
BCS-Nambu theory. They found the 
peak due to amplitude oscillations of 
superconducting gap - Higgs mode. 

9K

2K

Sooryakumar and Klein, PRL 45, 660 (1980)

Higgs

P. Littlewood and C. Varma, PRL 47, 811 (1980) 

Higgs gap (mass) =       in BCS (s-wave)2�



triplon (broken valence bond 
excitations) 

triplon

spin wave (NG)

longitudinal mode (Higgs)

Neel

paramagnet

Higgs + NG mode
condensation


