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Dirac semimetals
Dirac band structure realized in electronic spectrum:

- gapless, band touching at “Dirac points”

- protected by topology, crystalline symmetry, ...

2D

3D counterpart...?

graphene (sheet of carbon atoms)

surface states of topological insulators (gapped in the bulk)

Theoretical prediction: BiO2 Young et al. PRL 108, 140405 (2012) 

Liu et al. Science 343, 864 (2014) Neupane et al. Nat. Commun. 5, 3786 (2014) 

Experimentally realized recently.
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(“3D analogue of graphene”)



Many-body effects?

electron correlation can change the Dirac spctrum drastically...

Electron-electron interaction

Dynamical mass generation (excitonic instability, chiSB)

Renormalization of Fermi velocity (absence of Lorentz invariance)

Dynamical screening

Yu et al. PNAS 110, 3282 (2013) 

Many-body effects in 3D Dirac semimetals?

turn into various phases...

e.g.) graphene: vF renormalized at charge neutrality.

Change in the spectrum

e.g.) normal insulator, topological insulator,

Weyl semimetal, axionic insulator, ...

Important as a platform for many novel states. Liu et al. Science 343, 864 (2014) 



Analysis on many-body effects

This work: Lattice QED analysis with realistic d.o.f.s/symmetries.

■ From weak coupling... self-consistent eqn.

■ RPA(large-N) analysis

RG analysis

■ From strong coupling... strong coupling expansion of lattice QED

Hofmann et al. PRB 92, 045104 (2015) 

Gonzalez, arXiv:1502.07640

Throckmorton et al., arXiv:1505.05154

Sekine & Nomura, JPSJ 83, 094710 (2014); PRB 90, 075137 (2014)

w/ hypothetical lattice models.
Improve

connect the analysis to continuum limit.

How to investigate many-body effects?

Choice of interaction:

Lorentz non-invariant QED

phenomenological potential

RG, self-consistent eqn.,

Lattice Monte Carlo, ... etc.

In 3D Dirac semimetals...
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Lattice action for fermions
Lattice Hamiltonian:

(μbg→∞)

Path integral formalism:

Leave aτ dependence (aτ → 0 is required.)

with forward difference

Eigenvalue:

around Dirac points kD

cf.) A similar form appears in Astrakhantsev et al., arXiv:1506.00026

tight-binding Hamiltonian

background charge

Symmetries of the Hamiltonian [e.g. spin SU(2)] is preserved.

Split the imaginary time β into Nτ steps: aτ

e.g.) spin SU(2) is broken to U(1) in staggered fermion formalism.



Coupling to gauge field

Take the “renormalized” coupling

Continuum:

vF≪c: neglect the retardation (A1,2,3) effect.

Scalar potential A0: mediates 1/r Coulomb interaction.

: local charge density

Lattice:

Define the gauge variable on each site.

The total lattice action becomes
(not on the links)

as an expansion parameter.

e.g.) Na3Bi: vF/c ~ 10-3



Strong coupling expansion
(i) Expand around the strong coupling limit gR

-2=0

(ii) Integrate out the gauge degrees of freedom U0

Derive the effective action for fermions: Seff

Strong coupling limit [gR
-2=0]:

NLO correction [O(gR
-2)]:

Propagation of “photon” is suppressed.

Correlates charge density at the same site.

SG carries “photon” to a neighboring site.

Correlates charge densities between nearest neighboring sites.



Strong coupling limit

The system becomes Mott insulator in the continuum limit (aτ→0).

On-site repulsion is generated in the strong coupling limit:

Going back to Hamiltonian formalism:

Repulsive Hubbard interaction: U = 1/4aτ → ∞ in the continuum limit.

requires local charge neutrality:

i.e. “one electron per one site”



Mean-field analysis

e.g.) On the cubic lattice:

Integrate out the fermionic d.o.f.s:

T=0

On-site repulsion:

Introduce bosonic field

Mean field: antiferromagnetic (Neel) order

(t: hopping amplitude)

(local spin polarization)

aτ→0: Mott insulator (Dirac mass generation)

Continuous Discrete

(Hubbard-Stratonovich)



Dimensionality dependence

Introduce anisotropy in the hopping amplitude: tz/t⊥ = ν

ν = 1: 3D cubic symmetry

ν = 0: stacked 2D (e.g. graphene)

Observe the 3D-2D crossover at finite aτ ~ O(a).

ν = tz/t⊥

2D 3D

2aτt⊥ = 0.3, T = 0

Consistent with previous calculation with hypothetical staggered fermion.

Sekine & Nomura, PRB 90, 075137 (2014)

t⊥

tz

e.g.) Na3Bi: ν ~ 0.25



“Phase diagram”

2aτt⊥

ν = tz/t⊥

3D

2D

Continuous time Discrete time

Mott insulator
(antiferromagnet)

Dirac

semimetal

(T=0)

Finite aτ ~ O(a): consistent with the “staggered fermion” results.

aτ → 0 limit: local charge neutrality (Mott insulator) is required.

- connected by aτ-dependent formalism.



Away from strong coupling limit
Nearest-neighbor repulsion is generated in the next-to-leading order:

Contributes to

new type of order: “charge density wave”

renormalization of NN hopping → Fermi velocity

(assume n ~ 0 : around local charge neutrality)

not favorable around local charge neutrality...

Mean-field description:

NN hopping: tR = t (1 + z) Fermi velocity: vFR = vF (1 + z)

- renormalization from the strong coupling limit.

Introduce a mean field (Hubbard-Stratonovich) z.

Effective action:

i.e. the behavior of φ can be obtained 

by replacing t in the strong coupling limit with tR = t (1+z).



Velocity renormalization and RG flow

Coefficient ζ(tR) is obtained from the self-consistent eqn.:

Once the renormalized tR at finite coupling gR is chosen...

(at strong coupling limit)

ζ >  0
i.e.

RG flow of effective coupling strength:

AFM order gets suppressed.

weak coupling expansion strong coupling expansion

fixed point?

The effect of EM field on carriers

becomes smaller.

Throckmorton et al., arXiv:1505.05154 This work



Summary

Weyl semimetal, topological insulator, axionic insulator, ...

Defined the lattice action for 3D Dirac semimetals,

including
imaginary time discretization aτ

“background charge” field b

In the strong coupling limit (gR
-2 = 0) of Coulomb interaction,

infinitely large on-site (Hubbard) repulsion for aτ→0

Local charge neutrality is required. = Mott insulator.

At the next-leading-order [O(gR
-2)] in strong coupling expansion:

renormalization of Fermi velocity (NN hopping amplitude)

Opposite to the RG flow from weak coupling expansion.

Include other novel topological phases...

Necessary to connect finite aτ analysis to aτ→0 limit.




