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1) Introduction

What is the quantum entanglement ?

In quantum mechanics,
a physical state =a vector in Hilbert space.

Consider a spin of an electron, any state is described
by alinear combination:

W)=aN)+b),  Jal’ +|b[=1.



Consider the following states in two spin systems:

(i) A direct product state (unentangled state)

w)=2 %), +, e (1), 4, |
VIndependent = No entanglement
(ii)) An entangled state (EPR pair)

#)=|[1) o) —M o) | <> 1)
A 3 Non-Tocal correlation

One determines the other ! = 3 entanglement

Quantum Entanglement
= two body correlations peculiar to QM
= We know the total system but do not its subsystem.




Definition of entanglement entropy (EE)

Divide a quantum system into two parts A and B.
The total Hilbert space becomes factorized:

]{tot :HA ®HB )
Example: Spin Chain A B
ple: Sp AT
4—&—@—@—@—9—@—@ =) Ooe6e ocoo

Define the reduced density matrix £, for A by

Pa= 11504
Finally, the entanglement entropy (EE) S, is defined by

SA — —TI‘A joy logpA .| (von-Neumann entropy)




The Simplest Example: two spins (2 qubits)
i) [%)=2 |1), 9, Je[1), 44,

= o=l (1), Mol 4 <[ o]
‘ ? ‘ ? SAZO Not Entangled

o [¥)=]1) 814, 14 811, | 12
S T B UYOREY M (2 0]

1/2

S _logz Entangled
IEXY



EE in Quantum Many-body Systems and QFTs

The EE is defined geometrically
(sometime called geometric entropy).

Continuum . ,
Limit €0 N : timeslice
w:i & ' w : ””@H » Y ] a A s aB
S0 P S A
E ]{tot :HA ®HB ‘

Quantum Many-body Systems Quantum Field Theories (QFTs)



It is also helpful to look at (n-th) Renyi entanglement
entropy (REE) which generalizes the EE :

1

:—-logTr[(pA)”] :

S(ﬂ)
A l—n

lim S =-Tr[p, logp,]= . (Trlp,J=1).

n—1

If we know all of S/(f) , we find all eigenvalues of P 4.
(so called entanglement spectrum)



Quantum Entanglement has recently been applied to
various topics in theoretical physics:

 Condensed Matter Theory, Statistical Mechanics
(Renyi) Entanglement Entropy (EE)
Entanglement Spectrum (ES)

—> Quantum Order Parameter
~ Required 'Size’ of numerical quantum calculations

— Useful entropy in non-equilibrium processes
~ time evolutions of entropy under thermalizations

— Basic observables in numerical experiments
~detect central charges, topological orders, etc.



It is recently reported that (2" Renyi) EE was measured
even experimentally in a cold atom system.
[Markus Greiner’s talk at KITP conference 2015, June]

Markus Greiner (Harvard University) 05 V1 R=
Entanglement Entropy for 2 copies of 4-site systems

( metum | <5 <pgey] [Morkus Greiner (Harvasd University) 05] INEXT> [ast>
1_5_5'”“'”"i””"”'Mixed -
... and the whole apparatus 1 ,l/’ T -
— S s T
12 —Si0n P g o8 H
2 / = {
% 9 046:
o “I‘I’
=S f 2 Wpmigy
T 6 é; 5 Beam splitter
# =1
b _¢_complete¢ 060
0.3k 2-site 7{}_7__,_,-':2:
 1-site 03
i Pure
0 &
10 10 10
. und L]
g Mot supsrivid [
u
® insulator p ‘
L] L]

< Bt] <pre] [Macks Greine (Harvard Uiversty) 05] INEXT [



An example in cond-mat: Quantum Ising spin chain

Consider the Ising spin chain with a transverse magnetic field:
_ X z __Z
H = Zan /IZ o0,
n n

SAzE-log

— 6

SA

5

a

Ferromagnetism

- A

<a,f>¢0

[Vidal-Latorre-Rico-Kitaev 02, Calabrese-Cardy 04]



 Quantum Field Theories (QFTs)
(Renyi) Entanglement Entropy (EE)
—> A universal measure of degrees of freedom of QFTs
—> Proof of c-theorem, F-theorem from SSA
Area law ~ local QFTs = Geometrization of QFTs”

String Theory (Quantum Gravity)

AdS/CFT (Holography, Gauge/Gravity duality) tells us

Quantum entanglement in QFTs
~ (Quantum) Spacetime Geometry
as manifest in Holographic Entanglement Entropy



Basic Properties of EE

(i) If P is a pure state (i.e. 2, =|¥)(¥|) and H _=H,®H,,

then SA = SB ~ = EEis not extensive !

(ii) Strong Subadditivity (SSA) [Lieb-Ruskai 73]
When H =H ®H,®H,, forany p,,,

G

SAUB +SBUC ZSAuBuC +SB ‘

2
m) Concavity of EE = ¢ S(Zx) <0 "
dx




(2 Entanglement Entropy (EE) in QFTs

In QFTs, the EE is defined geometrically
(sometimes called geometric entropy).

N : Space (i.e.a time slice)
|

[ |
B @-8A:8B




(2-1) Area law [Bombelli-Koul-Lee-Sorkin 86, Srednicki 93,...]

EE in QFTs includes UV divergences.
Area Law

The leading contribution of EE for ground states of
(d+1) dim. QFT with a UV fixed point, behaves like

 Area(0A)

7
A

D, - (subleading terms),

where a is a UV cutoff (i.e. lattice spacing).

(Exception: d=1 CFT.)
Most strongly entangled




Comments on Area Law

* The area law can be applied for ground states or

finite temperature systems for QFTs with UV fixed points.

[ Proved for Free field theories: Plenio-Eisert-Dreissig-Cramer 04,05,
AdS/CFT supports this for interacting QFTs with UV fixed points. ]

* There are two exceptions:

. c, [
(a) 1+1dim. CFT S, :glog—.
a
[Holzhey-Larsen-Wilczek 94, Calabrese-Cardy 04]

(b) QFT with Fermi surfaces (kF ~ a_l)

d-1
S, ""[LJ -logi+...
a a

[Wolf 05, Gioev-Klich 05]




EE and quantum degrees of freedom

SA ~ Log| Effective rank’ of density matrix for A]
= This measures how much we can compress
the quantum information of 2,4 (e.g.in DMRG).

Especially, EE gets divergent at the quantum phase
transition point =a quantum order parameter !

Ex. Critical Ising spin chain (Length L)

SA~§logL=élogL = Eff.dim=1"°.

For L =100, Log|Eff.dim]~2.15 (smallenough)



Historical motivation

* The area law resembles the Bekenstein-Hawking formula

of black hole entropy: g
aLicanl )
. ’
o Area(horizon) Yy
BH ~— *
4G,

OA ~ BH horizon ?

Actually, the EE can be interpreted not as the total but as
only a partial (i.e. quantum corrections) contribution to
the black hole entropy. [Susskind-Uglm 94]

® A more direct interpretation needs the AdS/CFT.



(2-2) Replica method
A basic method to find EE in QFTs is the replica method.

0 0
S, :_§ logTr, (/OA) i

In the path-integral formalism, the ground state wave

function |¥) can be expressed as follows:




Then we can express
0, = TrB‘\P><\P‘ as follows: [0,]. =

Glue each boundaries successively.

Ir (/OA )n =

B Z(Zn) n -sheeted =

A (21)” Riemann surface X~ _//;




(2-3) Entropic C-theorem [casini-Huerta 04]

Consider a relativistic QFT.
We have S, +8,>8

Light cone

AUB + SAmB >

lA 'IB — lAuB 'lAmB

Weset [, ,=e

:>2-S[

o 0%S(x) _

> S(a)+ S(b),

0C(x)

<0 (entropicc-theorem).
Ox

BFQCDDIGE(E, FESADFEEZSH



3 Holographic Entanglement Entropy (HEE)

(3-1) AdS/CFT (best example of holography) [maldacena 97]

AdS/CFT
Quantum Gravity (String theory) Conformal Field Theory
on d+2 dim. AdS spacetime — (CFT) on d+1 dim.
(anti de-Sitter space) Minkowski spacetime
‘ Classical limit ‘;?rge Nlimit
rong coupling limit
General relativity with A<0  Strongly interacting
(Geometrical) quantum many-body systems

Basic Principle

Z. =/
(Bulk-Boundary relation) : |_ 24" CFT




(3-2) Holographic Entanglement Entropy (HEE)
[Ryu-TT 06, Hubeny-Rangamani-TT 07; Derived by Casini-Huerta-Myers 11
Lewkowycz-Maldacena 13]

S, =M Area(y, )
Oy 4=04 4GN

ya=4 L —

(We omit the time direction.)

7a is the minimal area surface
(codim.=2) such that

0A=0y, and A~y, .

homologous

z>¢ (UV cut off)

Note: we assumed an Euclidean AdS.

| dr +>"" di? +d2*
for Lorentzian spaces, we need to Js = R ! +Z:1 X, Taz
consider extremal surfaces. 2




[Comment 1]

The HEE formula can be regarded as a generalization
of Bekenstein-Hawking formula of black hole entropy:

~ Areaof BH

S
Bh 4G,

A Killing horizon (time independent Black hole)
< All components of extrinsic curvature are vanishing.

N

A minimal surface (or extremal surface)

<Traces of extrinsic curvature are vanishing.




[Comment 2]
The HEE formula suggests that

A spacetime in gravity
~ Collections of bits of quantum entanglement ?

g Area(y,) Area(y,) ( ~ Tensor networks)
A B ~ .

4G, L
Entangled pairs (bits) MERA

Entangler
[Vidal 05] gler,

/

= AdS

Planck length A [Swingle 09]



(3-3) Verifications of HEE

* Confirmations of basic properties:
Area law, Strong subadditivity (SSA), Conformal anomaly,....

e Direct Derivation of HEE from AdS/CFT:

(i) Pure AdS, A = a round sphere [Casini-Huerta-Myers 11]

(ii) Euclidean AdS/CFT [Lewkowycz-Maldacena 13, Faulkner 13, cf. Fursaev 06]
(iii) Disjoint Subsystems [Headrick 10, Faulkner 13, Hartman 13]

(iv) General time-dependent AdS/CFT - Not yet.

[But, many evidences: proof of SSA: Allais-Tonni 11, Callan-He-Headrick 12, Wall 13;
proof of causality: Headrick-Hubeny-Lawrence-Rangamani 14]

* Corrections to HEE beyond the supergravity limit:
[Higher derivatives: Hung-Myers-Smolkin 11, de Boer-Kulaxizi-Parnachev 11,
Dong 13, Camps 13]
[1/N effect: Faulkner-Lewkowycz-Maldacena 13, Barrella-Dong-Hartnoll-Martin 13,... ]
[Higher spin gravity: de Boer-Jottar 13, Ammon-Castro-Igbal 13]



Holographic Strong Subadditivity

The holographic proof of SSA inequality is very quick !
[Headrick-TT 07]

A A A
B >
C B 8 o B) — SAUB +SBUC ZSAuBuC_l_SB

C C
A A A>
B = B 2Bl =8, 3, +5: 25, +5,

Note: This proof can be appliedif §, = Min[F(;/A)],
for any functional F. &

= higher derivative corrections



HEE from AdS3/CFT2

In AdS3/CFT2, the HEE is given by the geodesic length
in the AdS3:

2 2 2
_ _|_d X
PENCY dz dt2 X |

z
This is explicitly evaluated as follows: ZI
x=NI"-z" =ds, ., = .

2 2 2

z7Al =2z V

A

L(y,)=2R[ dz L oRlog?.

3R L(y) c 21
C= — — el
260 = S, GO 3log —

[Brown-Henneaux 86]



Geometric Interpretation
(i) Small A (ii) Large A

Event Horizon

When A is large (1.e. high temperature), y, wraps
a part of horizon. This leads to the thermal contribution

S,=(xm/3)cIT to the entanglement entropy.

Note: §,#S5, duetothe BH.



Entanglement Entropy from AdS (A=round disk)

ﬂ_d/sz

[Ryu-TT 06]
[

S =
1 2GYIT(d2)

/

pd—l[
a

q = (—1)”‘”’2(5

A universal quantity which
characterizes odd dim. CFT

= Satisfy ‘C-theorem’

[Myers-Sinha 10; closely related

to F-theorem Jafferis-Klebanov-
Pufu-Safdi 11]

d-1 d-3
[y
a

J+ p, (if d = even)——, Arcalaw
divergence
qlog(ij (if d = odd)
a

—(d-2)/[2(d -3)].....
—2/(d-1)!!

Conformal Anomaly (central charge)
2d CFT c¢/3+log(l/a)

4d CFT -4a-log(l/a)
[Ryu-TT 06, Solodukhin 08,10, Lohmayer-Neuberger-

Schwimmer-Theisen 09, Dowker 10, Casini-Huerta, 10,
Myers-Sinha 10, Casini-Hueta-Myers 11]



@ First law of Entanglement Entropy

Below we study how EE changes when we excite

guantum systems. Especially we focus on CFTs or
quantum critical systems so that we can employ AdS/CFT.

We are interested in the difference AS of (Renyi) EE
between the excited state and the ground state:

AS(V = S;”)ﬂexcitedﬂ— Sﬁ[’)ﬂ0>] .

This is free from UV divergences.



(4-1) First law from HEE (Global Version)

Holographic Prediction [Bhattacharya-Nozaki-Ugajin-TT 12]

Consider exited states in a CFTd+1 with
translational and rotational invariance.

If the subsystem A is small enough such that
d+1 d 2
7,17 <<R" /G, =O(N"),
then the following 15t law’ like relation is satisfied:

T -AS,=AE,, T

C
ent ent 7 2
Information = Energy

Note: The constant c depends only on the geometry of A.




An intuitive explanation in AdS/CFT

Small minimal surface
: U n |Ve r‘ uallllllllll“”‘

AR
sl
g
g
.
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Large minimal surface
= Depends on the IR details

— f(2)dt* + g(z)dz* + " dx? ) |

de+1m
2)=1—-mz" + ..., D=1+mz"+.... =>e=T, =
() g(z) "~ TenG,




(4-2) First Law of EE (LOC3| version) [Blanco-Casini-Hung-Myers 13]

Define the relative entropy

S(o |l py) =Tr[p (logo, —log p,)]= 0.

-H
If we choose p—> p, =e ", we can show

S(p,s+Ap, |l py) =AS, _A<HA> = O((AIOA)Z)z 0.

Modular Hamiltonian

= First law of EE for any quantum systems.

In general HA is very complicated. But e.g. when we
consider a CFT vacuum and A is a round sphere, we have

H = aet=lxp
A x<L X 7 tt(x)




This local 1st law was shown to be equivalent to the

perturbative Einstein equation. [Lashkari-McDermott-
Raamsdonk 13, Faulkner-Guica-Hartman-Myers-Raamsdonk 13]

EX. Ad S4/C FT3 [Nozaki-Numasawa-Prudenziati-TT 13, Bhattacharya-TT 13]

A is a round ball with radius [. Its center is at (6, X) .
The perturbative Einstein equation is rewritten as follows:

R#v - leﬂv T Agﬂv - Tﬂ"
o 2 cc Matter field
Kinetic term 1 l T l contributions

, 3

(aﬁ 8,8 —l—zj AS,,(¢,%,1) = (O)O) $0



(4-3) Two Regions

(1) Small excitations (small energy density, small A)

In this case, we can apply

the first law of thermodynamics:

AS;’” oC [.AEA VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

(2) Large excitations (large energy density, large A)
This leads to a very entropic’ quantity !

= The main purpose of the next section.
[Nozaki-Numasawa-TT 14, He-Numasawa-Watanabe-TT 14, Caputa-Nozaki-TT 14]




5 Dynamics of Entanglement Entropy

(5-1) Homogeneous Excitations in CFT

A well-studied example: (global) qguantum quenches

m(t) 4 ~Quantum ] B _A B
qguench —>
/ /

| > ASA(t)
[Das’s talk,....] T‘ [
deCFT - ! when 7 < i / IThermaI en’f[ropy
IBeﬁ 2 O ] >
[2d CFT: Calabrese-Cardy 05] 5



= EE = a nice probe of thermalization processes

Quantum quenches in Higher dimensions ?
= QFT calculations are hard !

= We can apply AdS/CFT and employ HEE.

Quantum quenches in CFT = BH formations in AdS

The results show the linear growth even in higher dim.

[Arrastia-Aparicio-Lopez 10, Albash-Johnson 10, de Boer et.al 10, .....
Hartman-Maldacena 13, Liu-Suh 13,..]



(5-2) Time evolution of EE under local excitations

Our setup

Take a locally excited state in a given (d+1) dim. CFT:

‘O(x)> =e -O(x)‘ O>.

UV regularization \

of local operator A primary state with dim. A

(Note: ezlattice spacing)

Ao

— Total energy : I T,(x)dx" =
£

Then we consider its time evolution:

‘O(x,t)> = ‘ O(x)>.



What to Compute

The growth of (n-th Renyi) entanglement entropy

ASY = Mo -5 0)] .

For simplicity, we choose
A = a half space .

This calculation will show

D¢ propagations and generations
of quantum entanglement.



Summary of Main Results

(i) Integrable CFTs [Massless Free Fields, Minimal Models etc.]

AS™y  ASY(t = o) = finite = log[ D(O)].

(D(0) = quantum dim.)
= Propagation of entangled pairs

- 1

[
(ii) Holographic CFTs [AdS3/CFT2] = Chaotic CFTs !

AS

AS (1) = %logé

>t =Productions of entangled pairs




[A] Free Field Theory Calculations [Nozaki-Numasawa-TT 14]

[A-1] Replica formulation
The n-th Renyi EE can be expressed in terms of

2n-point correlation functions on 2n :

AS( = L-[log<0(r,,9f)0(re,9:)..-0(;;,0,1)0(re,¢9;)>2

l—n

~n-10g(0(1,6,)0(1,6,)). }

o B0 2 Sn

Ofr, ) Olre
=Y I‘\: /
Z/ A n-sheets




[A-2] Results in free massless scalar theory

ASY for O=¢: (e k=1
2 dim. (0=¢"?)

0.6

6 dim. AS () (0)

Interested
guantities !

0.0 CAENES R TR EE AN DR AR DOV DN TR U ARSI |
0 10 20 30 40 50 60 70 t

2 2t°
E.g. ASiam =l0g a7 |

Note:
AS;”)fis ‘topologically invariant’
under deformations of A.

Operator
:
I

[

A A
I I
Entangled pair

B




AS" for O=¢" in d+1>2dim.

TABLE L AS;")f and ASY, (: ASS”) for free massless

scalar field theories in dimensions higher than two (d > 1).

nlk=1 k=2 k=1
2 [flog 2 log = — log (557 Zizg (le)Q)
ASTY | 3 1og 2 5 log 22 - log (% Z;:o (lcj)B)
Remli,
Entrgp :
2m—1 l m
m\ log 2 ﬁlogﬁnﬁﬁ ﬁlog(g—iﬁ, Zj: (:C5) )
ASY |1 Nog 3 log 2 |tlog2— 2 37 1C; log i C;

von-Numann EE

EPR state !

[For a proof: Nozaki, arXiv:1405.58754]




[A-3] Heuristic Explanation

First , notice that in free CFTs, there are definite
particles moving at the speed of light.

= ¢~ ¢ + ¢ + |L=A|R=B

left-moving  right-moving
k k ' k—j
¢ ‘VaC>sz:O ij'(¢L)J (&z) ]‘VaC>

- 2_k/2zl;:o‘\/ kcj‘j>L‘k_j>R

(”)f - —nk .
= AS! - nlog[Z Z] GC)) l Agrge with
) — replica
AS} =klog2—2" ijokcj'bg[ij]-_ Calculations !



B] Rational 2d CFTs [He-Numasawa-Watanabe-TT 14]

B-1] Free Scalar CFT in 2d

Consider following two operators in the free scalar CFT:

() 0,=e™, = AS®/ =0

10,)=¢e""|0), ®e“*|0) =Direct product state
(i) 0, =e" +e7, = AS(" =log2.
10,)=e""|0), ®e'™*|0) +e7*|0) ®e**|0)

z\T>L\T>R+\¢>LH>R = EPR state



[B-2] Rational 2d CFTs (e.g. minimal models, WZW models)

2"d Renyi EE = 4 pt. function: <O(oo)0(1)0(z)0(0)>.

(i) Earlytime (0<7</):(z,z)— (0,0).
Chiral Fusion

(ii) Late time (t > Z) : (z,2) = (1,0). Transformation
z>1-2z

This allows us to prove AS;’”’) =log D(Q) for any n.
quantum dim.

Ex. Ising model : A4S [I]1=48S"[&]=0,
AS™[o]=log V2.




[C] Holographic Analysis X

A locally excited state
~ A falling particle in AdS. A
A, = mR /2

[e.g. stress tensors agree with the CFT. | \

<«

We can find an analytical metric

Boundary

using the Horowitz-ltzhaki map.

C [ [Holographic Calculations: Numasawa-Nozaki-TT 13,
ASA ~ —lOg — |. Caputa-Nozaki-TT 14]
6 E [Large ¢ CFT computations: Asplund-Bernamonti-

Galli-Hartman 14]

C
cf. AS,~—logt , = 4
f 473 g1l ,forlocal quenches Soint

in the sense of Calabrese-Cardy 2007. [Holographic Calculation: Ugajin 13]
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®) Conclusions

EE opens up new connections in theoret




