

Kobayashi Maskawa Institute Department of Physics, Nagoya University *Chiho NONAKA*

K M i I M M K M I

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

> Hydrodynamic Model: Yukinao Akamatsu, Shu-ichiro Inutsuka, Makoto Takamoto Hybrid Model: Yukinao Akamatsu, Steffen Bass, Jonah Bernhard

> > September 5, 2014@TQFT 2014, 理化学研究所

Hydrodynamic models: application to HIC, Landau 1953, Bjorken 1986

Viscous Hydrodynamic Model

Relativistic viscous hydrodynamic equation

 $\partial_{\mu}T^{\mu\nu} = 0 \qquad T^{\mu\nu} = (\epsilon + p)u^{\mu}u^{\nu} - g^{\mu\nu} + \Delta T^{\mu\nu}$

- First order in gradient: acausality

- Second order in gradient: which one is suitable for HIC?
 - Israel-Stewart, Ottinger and Grmela, AdS/CFT, Grad's 14momentum expansion, Renormalization group

Numerical scheme

- First order accuracy: large dissipation
- Second order accuracy : numerical oscillation

-> artificial viscosity, flux limiter

- Heavy Ion Collisions: SHASTA, KT
 - -> Godunov scheme: Riemann solver

Numerical Scheme

Israel-Stewart Theory

Akamatsu, Inutsuka, CN, Takamoto, arXiv:1302.1665, J. Comp. Phys. (2014)34

1. Dissipative fluid equation

$$\partial_{\mu}T^{\mu\nu} = 0$$

$$T^{\mu\nu} = (\epsilon + p)u^{\mu}u^{\nu} - pg^{\mu\nu} + q^{\mu}u^{\nu} + q^{\nu}u^{\mu} + \tau^{\mu\nu}$$

$$= T_{\text{ideal}} + T_{\text{dissip}}$$

Ideal part:

Riemann solver for QGP: Godunov method

Two shock approximation Mignone, Plewa and Bodo, Astrophys. J. S160, 199 (2005)

• Shock Tube Test : Molnar, Niemi, Rischke, Eur. Phys. J.C65, 615 (2010)

Shocktube problem

• Ideal case

L1 Norm

• Numerical dissipation: deviation from analytical solution

Large ΔT difference

10

• SHASTA with small A_{ad} has large numerical dissipation

Large ΔT difference

- Our algorithm is stable even with small numerical dissipation.

Hydrodynamic models: application to HIC, Landau 1953, Bjorken 1986

Initial Pressure Distribution

Simulation setups:

- Free gluon EoS
- Hydro in 2D boost invariant simulation

Time Evolution of Entropy

Entropy of hydro (T>T_{sw}=155MeV)

Time Evolution of ε_n and v_n

• Eccentricity & Flow anisotropy

$$\varepsilon_{n}e^{in\Phi_{n}} = \left\langle z^{n}\right\rangle / \left\langle \left|z\right|^{n}\right\rangle, \quad z = x + iy \quad \text{Shift the origin so that } \varepsilon_{1} = 0$$

$$v_{n}e^{in\psi_{n}} = \left\langle v^{n}\right\rangle, \quad v = v_{x} + iv_{y}, \quad (0 \le \varepsilon_{n}, v_{n} \le 1)$$

$$\left\langle \cdots \right\rangle = \int_{T > T_{f} = 155 \text{ MeV}} d^{2}x \quad \cdots \quad S^{0}(x, y) / \int_{T > T_{f} = 155 \text{ MeV}} d^{2}x \quad S^{0}(x, y)$$

• $\epsilon_n \rightarrow v_n$

C. NONAKA

- ϵ_3 has the minimum in time evolution.
 - -> The shape of initial ε_3 changes?

Eccentricities vs higher harmonics

• RHIC (one event, 15-20%)

MC-KLN

ε₃ shows the sudden change
 -> final ε₃ becomes small.

C. NONAKA

Eccentricities vs higher harmonics

MC-KLN

TOFT2014

• Comparison with LHC (one event, 15-20%) \mathcal{E}_n

- Initial ε_n at LHC is almost same as that at RHIC.
- ε_3 has the minimum in time evolution.
- Life time of the fireball at LHC is larger than that at RHIC.
- Final $\epsilon_{3}^{}$ at LHC becomes small? C. NONAKA

Eccentricities vs higher harmonics

• Comparison with LHC (one event, 15-20%)

- v₁: Bjorken's scaling solution.
- v₂ is the largest flow in whole time evolution.
- v_5 at LHC grows up in the beginning of the time evolution

TQFT2014

MC-KLN

Hydro + UrQMD

• Slope of P_T spectra at LHC is flatter that at RHIC.

Effect of Hadronic Interaction

Transverse momentum distribution

Higher harmonics from Hydro + UrQMD

Effect of hadronic interaction

• v_n (MC-Glauber) < v_n (MC-KLN) $\varepsilon_{n, initial}$ (MC Glauber) < $\varepsilon_{n, initial}$ (MC-KLN)

• We develop a state-of-the-art numerical scheme

Our algorithm

- Less artificial diffusion: crucial for viscosity analyses
- Stable for strong shock wave
- Construction of a hybrid model
 - Fluctuating initial conditions + Hydrodynamic evolution + UrQMD
- Higher Harmonics
 - Time evolution, hadron interaction
 - Initial conditions, QGP property

