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Motivation

• Magnetic field order of strong interaction 
Magnetars  
 1010 [T] = 106 [G] 
Non central heavy ion collision  
 1011 [G] ~ eB = 0.1 [GeV2] ~ 5 mπ2 

Life time of magnetic field is very short  
  0.1fm ~ 10-24 s 

• In this talk, however, we investigate properties of the 

strongly interacting matter under static magnetic field. 

・Magnetism of the QCD vacuum 

・Chiral phase transition under strong magnetic field
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B
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Magnetism of electron gas

• Competition of spin and orbital angular momentum 

• Spin part provides larger contributions and Fermi gas 
shows paramagnetism. 

• Magnetism of QCD vacuum will be determined by the 
nature of charged quark and mesons.
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Free energy and χ

• Magnetic susceptibility is the second order coefficient of 
the free energy.

Bind = Bext +M = (1 + �)Bext

Magnetisation:

Free energy: ⌦ = �P

Magnetic susceptibility: �

P ⇠ P0 +
�

2
(eB)2 +O(eB4)or



Free quark (vacuum) 

• The B square term has a divergence (ε->0). 

• χ must be renormalised by renormalisation of electric 
charge. 

• To avoid the cutoff dependence, the following 
renormalisation condition is usually imposed in non-
perturbative methods.
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We next consider the contribution to the effective po-
tential from the charged pions. Summing over the Mat-
subara frequencies in Eq. (18), we obtain
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The first integral is ultraviolet divergent and we compute
in dimensional regularization with d = 1−2ϵ. This yields
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Eq. (26) shows that the sum over Landau levels n in-
volves the term M2−2ϵ

B . This sum is divergent for ϵ = 0
and we regulate it using zeta-function regularization.
After scaling out a factor of (2|qB|)1−ϵ, this sum can
be written as
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Expanding Eq. (28), we obtain
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where ζ(1,0)(−1, 1
2 + x) is the derivative of the Hurwitz zeta function with respect to the first argument and where
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The vacuum contributions from the quarks can be calculated in the same manner, and one finds [46, 63, 64]
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where xf = m2
q/2|qfB|. The divergences of the effective

potential are given by Eqs. (24), (29), and (30). The
divergences that depend on the magnetic field are given
by
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These divergences are removed by wavefunction renor-
malization of the (external) gauge field Aµ. This is done
by making the replacement in the tree-level Lagrangian

Eq. (9) [65]:

B2 → B2

[

1−
q2

48π2ϵ
−Nc

∑

f

q2f
12π2ϵ

]

. (32)

The remaining divergences in V1 are given by
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These are the same divergences as one encounters in van-
ishing magnetic field and so the usual renormalization
procedure can be used to eliminate them. This is done

4

Normalised pressure
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Bonati et.al 2013



Thermal part

• Quarks show paramagnetism (χ > 0), while pions show the 
diamagnetism (χ < 0). 

• This may be understood as a competition of the orbital and 
spin magnetisation. 

• Let’s see effects of interaction and phase transition.
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7. Ref.[4]: [This is the most important article for renormalization at

nonzero B.] Various thermodynamic observables are calculated in the Hadron
Resonance Gas model. The pressure is calculated with dimensional regulariza-
tion, from which the B = 0 pressure is subtracted. Remaining divergence is
removed via renormalization of the electric charge (q ! q

r

) and the pure mag-
netic energy (

1

2

B2 ! 1

2

B2

r

). As remarked at the end of Section 3.3 of [4], the
prescription in this paper is the only choice, for which the pure magnetic term
1

2

B2

r

is the only quadratic part of the vacuum pressure, and the free energy (and
magnetization) of particles vanish as their masses go to infinity.

8. Ref.[5, 8]: In [5] the magnetization, M , at T = 0 is measured, after a subtraction

of the divergent O(eB) term: M r · eB ⌘ M · eB � (eB)

2 · lim

eB!0

M · eB
(eB)

2

. Thus

M r / (eB)

3 for small fields at T = 0.
In [8] the magnetization at T > 0 is measured. They renormalize M by sub-
tracting the divergent O(eB) term at T = 0. At T > 0, a finite O(eB) term
shows up in M r and grows with T .

4 Magnetic susceptibility of free pions and quarks

4.1 Free pions

Since the vacuum part does not contribute to the magnetic susceptibility, we only take the
thermal pressure into account:
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Equation (4.4) can be derived as follows.
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hence (4.4) is proved.
The contribution to �̂ from free charged pions reads
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This implies that the charged pion gas is diamagnetic. It diverges to �1 as m
⇡

/T ! 0.

4.2 Free quarks

We omit the vacuum term and concentrate on the thermal integral for a free quark of charge
e
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and color N
c
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It can be shown that
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Equation (4.16) can be derived as follows.
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The contribution to �̂ from free quarks reads
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Thus the free quark gas is paramagnetic. It diverges to +1 as m
q

/T ! 0.
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Quark (s = 1/2) Meson (s = 0)

Analyses on the quark meson model



3-flavor Quark meson model

• Σ is 3x3 complex matrix i.e., describes 8 scalar and 8 pseudo 
scalar mesons. 

• ρ1 and ρ2 are invariants under the U(3) x U(3) flavour-chiral 
rotation. 

• Ca is Kobayashi-Masukawa term which represents the 
effects of UA(1) anomaly. 

• Inclusion of external magnetic field is achieve by 

2 Formulation

In order to evaluate the thermodynamic property of the strongly correlated matter, we anal-
yses the three-flavor quark meson (QM) model. Mesonic fluctuations which are neglected
in the mean field approximation are incorporated by solving the functional renormaliza-
tion group equation. In this section we introduce the three flavor QM model first. Next
we explain basics of the functional renormalization group method. We will introduce an
approximation which is appropriate for the investigation of thermodynamic property and
mass spectrum of the quark-meson model and derive a flow equation for effective potential.
Finally we explain how to compute observables from the effective potential of the model.

2.1 The Nf = 2 + 1 Quark-Meson model

The three-flavor QM model [58, 59] is the U(3) ⇥ U(3) linear �-model [60–64] coupled to
quarks:
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"
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a
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a

) meson multiplet,
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+ i⇡
a
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where T
a

is generator of U(3) group normalized tr[T
a

, T
b

] =

1
2�ab. The term proportional to

c
a

is so called the Kobayashi-Maskawa-’t Hooft term which represents the effects of UA(1)

anomaly in the hadron sector. h
i

are the explicit symmetry breaking terms expressing the
effect of quark masses. Below we assume h3, h8 � 0 and h

i

= 0 otherwise, and c
a

> 0.
⇢1 and ⇢2 are invariants under U(3)⇥ U(3) rotations which is defined as

⇢1 = tr[⌃⌃

†
] ,

⇢2 = tr

h
(⌃⌃

†
)

2 � 1

3

⇢1

i
.

(2.3)

Generally, we can compose N independent invariants for the U(N) ⇥ U(N) flavor-chiral
rotation. However, in this work, we include relevant invariants only and neglect higher
order invariants. The mesonic potential is a general function of the invariants up to 4th
order of fields,

U(⇢1, ⇢2) = a(1,0)⇢1 +
a(2,0)

2

⇢21 + a(0,1)⇢2 , (2.4)

where a(1,0), a(2,0) and a(0,1) are the free parameters of the model.

– 3 –

2 Formulation

In order to evaluate the thermodynamic property of the strongly correlated matter, we anal-
yses the three-flavor quark meson (QM) model. Mesonic fluctuations which are neglected
in the mean field approximation are incorporated by solving the functional renormaliza-
tion group equation. In this section we introduce the three flavor QM model first. Next
we explain basics of the functional renormalization group method. We will introduce an
approximation which is appropriate for the investigation of thermodynamic property and
mass spectrum of the quark-meson model and derive a flow equation for effective potential.
Finally we explain how to compute observables from the effective potential of the model.

2.1 The Nf = 2 + 1 Quark-Meson model

The three-flavor QM model [58, 59] is the U(3) ⇥ U(3) linear �-model [60–64] coupled to
quarks:

L =  

"
/@ + g

8X

a=0

T
a

(�
a

+ i�5⇡a)

#
 + tr[@

µ

⌃@
µ

⌃

†
] + U(⇢1, ⇢2)� h

i

�
i

� c
a

⇠ ,

⇠ = det⌃+ det⌃

† ,

(2.1)

where ⌃ is 3⇥ 3 complex matrix field and it is parametrised by the scalar (�
a

) and pseudo-
scalar (⇡

a

) meson multiplet,

⌃ =

8X

a=0

T
a

(�
a

+ i⇡
a

) , (2.2)

where T
a

is generator of U(3) group normalized tr[T
a

, T
b

] =

1
2�ab. The term proportional to

c
a

is so called the Kobayashi-Maskawa-’t Hooft term which represents the effects of UA(1)

anomaly in the hadron sector. h
i

are the explicit symmetry breaking terms expressing the
effect of quark masses. Below we assume h3, h8 � 0 and h

i

= 0 otherwise, and c
a

> 0.
⇢1 and ⇢2 are invariants under U(3)⇥ U(3) rotations which is defined as

⇢1 = tr[⌃⌃

†
] ,

⇢2 = tr

h
(⌃⌃

†
)

2 � 1

3

⇢1

i
.

(2.3)
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Functional RG

• Anzats for effective action (Local potential approximation) 

!

• We solve flow equation for Uk
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RG equation for Uk

• Vacuum is determined by  

• Pressure is given as 

• Meson masses are given as a function of Uk=0 or derivatives 
of Uk=0 
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Meson screening masses

• Chiral phase transition occurs. 

• Lowest Landau level of charged mesons are given

eB = 0 eB = 14M2
⇡

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  50  100  150  200  250  300  350  400

M
 [M

eV
]

T [MeV]

Mu,d
Ms

M�
MK

M�
M�'

Ma
M�

M�
Mf0

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  50  100  150  200  250  300  350  400

M
 [M

eV
]

T [MeV]

Mu,d
Ms

M�
MK

M�
M�'

Ma
M�

M�
Mf0

M2
LL = M2

scr + 2eB



Phase diagram

• Tc increases with increasing eB. (Magnetic catalyses)
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Anti-Magnetic catalyses

• As far as I know, no chiral effective model explains the Anti-
Magnetic catalyses.

2+1 flavor Lattice [G.S. Bali et al. (2012)]

J
H
E
P
0
2
(
2
0
1
2
)
0
4
4

Figure 9. The phase diagram of QCD in the B−T plane, determined from the renormalized chiral
condensate ūur+ d̄dr (upper left panel), the renormalized chiral susceptibility χr

u+χ
r
d (upper right)

and the strange quark number susceptibility cs2 (lower panel).

9 The phase diagram

Finally, using the fitted two-dimensional surfaces of section 6, we study the observables as

functions of the temperature, along the lines of constant magnetic field. In particular we

analyze the renormalized chiral susceptibility χr
u + χr

d, the renormalized chiral condensate

ūur + d̄dr and the strange quark number susceptibility cs2. For the latter two observables

we determine the pseudocritical temperature Tc(B) as the inflection points of the curves,

while for the former we calculate the position of the maximum value of the observable.

The results are shown in figure 9.

To carry out the continuum extrapolation, we fit the results for Tc(B) for all three

lattice spacings (Nt = 6, 8 and 10) together with an Nt-dependent polynomial function of

order four of the form Tc(B,Nt) =
∑4

i=0(ai + biN
−2
t )Bi. This ensures the scaling of the

final results with N−2
t ∼ a2. We obtain χ2/dof. ≈ 0.5 . . . 1.2 indicating good fit qualities.

In order not to make the plots overcrowded, we only show error bars for the continuum

curves. The error coming from the continuum extrapolation is estimated to be 2MeV and is

added to the statistical error in quadrature. The error in the lattice scale determination [54]

propagates in the Tc(B) function and amounts to an additional 2−3MeV systematic error,

– 15 –
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Pressure

• Pressure vs eB for (0 < T < 500 [MeV] ~ 2.5 Tc) 

• We fit the pressure with trial function  
using Gnuplot
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Comparison with Lattice QCD

• At low temperature, the matter has diamagnetism. 

• Beyond Tc, χ changes the sign and the matter has 
paramagnetism.

5

lattice spacing adopted and for two different lattice sizes,
243× 4 and 243× 24: the former corresponds to T ≃ 227
MeV, the latter is our reference T ∼ 0 lattice. The range
of explored values of b spans the first 5 quanta of magnetic
field and for each quantum we have determined M on a
grid of 16 equally spaced points. Such a grid turns out
to be fine enough to allow a reliable integration of M
(see Ref. [21] for a discussion of the related systematic
uncertainties).
The integral of M over each quantum returns the el-

ementary finite differences a4(f(b) − f(b − 1)). Such
quantities are more convenient than the whole difference
∆f(b) = f(b)− f(0), since they can be determined inde-
pendently of each other (one does not need to perform
the whole integration from 0 to b) and have therefore
independent statistical errors, thus allowing to exploit
standard fit procedures for uncorrelated data.
The finite differences corresponding to the data in

Fig. 1 are reported in Fig. 2. We also report, after proper
rescaling, data obtained on a smaller 163 × 4 lattice and
at the same value of the lattice spacing, which show the
absence of significant finite size effects. Assuming that
a4∆f(b) ≡ c2 b2 +O(b4) holds for integer b, then

a4 (f(b)− f(b− 1)) ≃ c2 (2b− 1) . (15)

Data in Fig. 2 are well reproduced by such a behavior in
the whole explored range, and a number of different tests
have been performed to check the stability of our fit. In
particular, the values obtained for c2 are stable, within
errors, if the number of fitted points is changed, and also
if a quartic term is added to the free energy, i.e. if a fit
of the form ∆f(b) = c2b2 + c4b4 is tried, which returns
c2 compatible, within errors, with the result obtained by
the simple quadratic fit, and c4 compatible with zero.
Finally, we have also tried a fit according to a generic
power law behavior, ∆f(b) ∝ bα, which returns α = 2
within the precision of 1%.
It is interesting to notice that this implies that strongly

interacting matter behaves like a material with a linear
response, at least for magnetic fields up to eB ∼ 0.1
GeV2, corresponding to the highest field in the figure.
Good linear fits are obtained in similar ranges of eB for
all explored values of a and T .
The difference of the two slopes, c2R = c2(Lt = 4) −

c2(Lt = 24), finally yields the renormalized free energy
a4∆fR = c2Rb

2 + O(b4). The determination of χ̃ just
requires a conversion into physical units for ∆fR and b,
according to Eq. (1). The result is

χ̃ = −
|e|2µ0c

18!π2
L4
s c2R , (16)

in SI units (! and c have been reintroduced explic-
itly). Instead, adopting natural units, one obtains 1 (see

1 Actually, χ̃ and χ̂, which are both dimensionless quantities, are
related to each other by a simple constant factor, χ̂ ≃ 10.9 χ̃.
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a=0.2173 fm, Ls=24
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FIG. 3: Susceptibility (SI units) as a function of T , for
different values of the lattice spacing.

Ls Lt a (fm) T (MeV) 103χ̃ 102χ̂
24 4 0.2173(4) 226(5) 2.648(62) 2.887(68)
24 6 0.2173(4) 151(3) 0.620(96) 0.67(10)
24 8 0.2173(4) 113(2) 0.03(10) 0.03(11)
24 10 0.2173(4) 90(2) -0.02(13) -0.02(14)
32 4 0.1535(3) 321(6) 4.11(10) 4.48(11)
32 6 0.1535(3) 214(4) 2.32(12) 2.53(13)
32 8 0.1535(3) 160(3) 0.86(13) 0.94(14)
32 10 0.1535(3) 128(2) 0.29(15) 0.32(17)
32 12 0.1535(3) 107(2) 0.17(15) 0.19(16)
40 4 0.1249(3) 394(8) 4.62(12) 5.04(13)
40 6 0.1249(3) 263(5) 2.97(14) 3.24(15)
40 8 0.1249(3) 197(4) 1.61(14) 1.75(15)
40 12 0.1249(3) 131(3) 0.27(15) 0.30(16)
40 16 0.1249(3) 99(2) 0.07(16) 0.07(18)

TABLE II: Lattice parameters and results for χ̃ and χ̂ (for
the systematical error of the lattice spacing see Tab. (I)).

Eq. (7))

χ̂ = −
L4
s c2R
18π2

. (17)

A similar procedure has been repeated for all combina-
tions of T and a reported in Table I. Results are shown
in Table II and in Fig. 3.

A. Discussion

Data displayed in Fig. 3 reveal various interesting fea-
tures. First of all, one notices that the approach to the
continuum limit is very rapid and no significant differ-
ences are observed between data computed at different
values of the UV cutoff.
Results are in qualitative agreement with those of

Ref. [21], obtained by exploiting the same computational
method but for Nf = 2 with unphysical quark masses,
see Fig. 4. Quantitative differences can be explained in
part by the presence of the strange quark (which how-
ever gives a contribution to the total signal which is not

Bonati et.al 2013
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Comparison with Lattice QCD

• At Hadron phase, charged mesons (especially pion) are 
dominant 

• While QGP phase, u,d quarks are dominant.
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Mean field

• If we neglect meson loop contributions (mean field 
approximation), the matter is paramagnetic for almost 
all region. 

• The origin of diamagnetism is charged mesons. 
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Summary

• We solve the 3-flavor quark-meson model under strong 
magnetic field with Functional-RG. 

• We have calculated magnetisation of the QCD matter at 
zero chemical potential. 

• At the hadron phase, QCD vacuum shows diamagnetism, 
due to light charged pions. 

• At the QGP phase, the matter shows paramagnetism, due 
to almost bare quarks.


