Study on charmonium and bottomonium correlation functions in lattice QCD at finite temperature

H. Ohno^{1,2}

in collaboration with H.-T. Ding³ and O. Kaczmarek⁴ ¹University of Tsukuba, ²Brookhaven National Laboratory, ³Central China Normal University, ⁴Bielefeld University

理研シンポジウム・iTHES研究会 「熱場の量子論とその応用」 理化学研究所大河内記念ホール、2014年9月4日

Quarkonium in hot medium

N. Brambilla et al., EPJ C71 (2011) 1534

Sequential Bottomonium suppression @ LHC \rightarrow

Investigating dissociation temperatures of charmonia and bottomonia by first principle lattice QCD calculation is important

H. Ohno 熱場の量子論とその応用2014

Transport coefficient

The evolution of the system in hydro models **← Transport coefficients are important.**

Determination by the first principle calculation in QCD is needed.

Adare et al. [PHENIX Collaboration], PRL 98 (2007) 172301

H. Ohno 熱場の量子論とその応用2014

Meson correlator & spectral function

Heavy quark diffusion constant

$$\chi_{00} : \text{Quark number susceptibility} \\ \rho_{00}^{V}(\omega) = 2\pi\chi_{00}\omega\delta(\omega) \quad \Longrightarrow \quad G_{00}^{V}(\tau) = T\chi_{00}$$

D is related to the vector spectral function around zero frequency.

H. Ohno 熱場の量子論とその応用2014

Recent lattice studies : spectral functions

- Charmonia
 - Quenched QCD
 - Both S- and P-wave states are dissociated above $\sim 1.5T_c$.
 - H.-T. Ding et al., PRD 86 (2012) 014509

• Bottomonia

- 2-flavor, nonrelativistic QCD
- Y has no temperature dependence up to $2.09T_{c}$.
- χ_{b0} is sensitive to the presence of thermal medium immediately above T_c .
- Momentum dependence is effectively

temperature independent.

G.Aarts *et al.*, PRL 106 (2011) 061602 G.Aarts *et al.*, JHEP 1303 (2012) 084

H. Ohno 熱場の量子論とその応用2014

Recent lattice studies : diffusion constant

Perturbative estimate
 2πDT ≈ 71.2 in LO
 2πDT ≈ 8.4 in NLO

• Strong coupling limit $2\pi DT \approx 1$

Kovtun, Son and Starinets, JHEP 0310 (2004) 064

Moore and Teaney, PRD 71 (2005) 064904, Caron-Hout and Moore, PRL 100 (2008) 052301

Screening mass

Simulation Setup

• Standard plauette gauge & O(a)-improved Wilson quark actions

•	In quenched QCD	β	N_{σ}	N_{τ}	T/T_c	# confs.
•	On fine and large isotropic lattices	7.192	96	48 32	$\begin{array}{c} 0.7 \\ 1 \end{array}$	$259 \\ 476$
•	2 different cutoff			$\frac{52}{28}$	$1.1 \\ 1.2$	336
•	$T = 0.7 - 1.4T_{\rm c}$	7 793	192	$\frac{24}{96}$	$\frac{1.4}{0.7}$	$\frac{336}{60}$
•	Both charm & bottom		192	48	1. 4	91

• Computing meson correlation functions

β	$a \; [\mathrm{fm}]$	a^{-1} [GeV]	$\kappa_{ m charm}$	$\kappa_{ m bottom}$	$m_{J/\Psi} \; [{ m GeV}]$	$m_{\Upsilon} \; [\text{GeV}]$
7.192	0.0190	10.4	0.13194	0.12257	3.105(3)	9.468(3)
7.793	0.00968	20.4	0.13221	0.12798	3.089(6)	9.437(6)

Experimental values: $m_{J/\Psi} = 3.096.916(11) \text{ GeV}, m_{Y} = 9.46030(26) \text{ GeV}$ J. Beringer *et al.* [PDG], PRD 86 (2012) 010001

Results (1) : Screening mass

Reconstructed correlator

$$\begin{split} G_{\rm rec}(\tau,T;T') &\equiv \int_0^\infty d\omega \rho(\omega,T') K(\omega,\tau,T) \\ \frac{G(\tau,T)}{G_{\rm rec}(\tau,T;T')} \quad \text{equals to unity at all } \tau \\ \text{if the spectral function doesn't vary with temperature} \\ \text{S. Datta et al., PRD 69 (2004) 094507} \end{split}$$

$$\frac{\cosh[\omega(\tau - N_{\tau}/2)]}{\sinh[\omega N_{\tau}/2]} = \sum_{\substack{\tau' = \tau; \Delta \tau' = N_{\tau}}}^{N'_{\tau} - N_{\tau} + \tau} \frac{\cosh[\omega(\tau' - N'_{\tau}/2)]}{\sinh[\omega N'_{\tau}/2]}$$
$$T = 1/(N_{\tau}a) \qquad N'_{\tau} = mN_{\tau} \qquad m = 1, 2, 3, \cdots$$
$$G_{\rm rec}(\tau, T; T') = \sum_{\substack{\tau' = \tilde{\tau}; \Delta \tau' = N_{\tau}}}^{N'_{\tau} - N_{\tau} + \tau} G(\tau', T')$$
$$H.-T. \text{ Ding et al., PRD 86 (2012) 014509}$$

H. Ohno 熱場の量子論とその応用2014

Results (2) : reconstructed correlator

V, S and Av channels have strong modification at large τ , which might be related to the transport peak

H. Ohno 熱場の量子論とその応用2014

Results (2) : reconstructed correlator

Most part of the strong enhancement at large τ/a for V channel comes from the zero mode contribution.

H. Ohno 熱場の量子論とその応用2014

Results (3) : heavy quark diffusion constant

χ_{00} increases as increasing temperature for charm. χ_{00} has quite small temperature dependence for bottom.

H. Ohno 熱場の量子論とその応用2014

Results (3) : heavy quark diffusion constant

Charm: 2πTD ≈ 0.6−4 (β = 7.192), 2πTD ≈ 0.5−3 (β = 7.793) for $m_a = 1-2$ GeV

Bottom: there is no intersection for $m_q = 4 - 5$ GeV

H. Ohno 熱場の量子論とその応用2014

Conclusions

- We calculate meson correlation functions
 - On fine and large isotropic lattices
 - With 2 different cutoff & quark mass for both charm and bottom
- Screening masses
 - different temperature dependence between S and P wave states
 - small temperature dependence for bottomonia
- Meson spectral functions are investigated by using reconstructed correlators
 - V, S and Av channel have strong modification at large τ, which might be related to the transport peak.
 - From the difference between the ordinary and reconstructed correlators, the heavy quark diffusion constant is roughly estimated in the charm case.

H. Ohno 熱場の量子論とその応用2014

Outlook

- Taking continuum limit
- Investigating spectral functions directly
 - Bayesian analysis
- Estimating transport coefficients more accurately.
- Investigating exited states
 - variational analysis

End