複素Borel和則を用いた 有限温度でのクォーコニウムの解析

<u>荒木賢志(東工大)</u>、鈴木渓(東工大)、Philipp Gubler (理研)、岡真(東工大)

クオーコニウム抑制

クオーコニウム抑制:QGP中でクォーコニウムが消失する現象

> 近年では、 励起状態が基底状態に比べてより強く 切制されるという実験結果が報告されている

A. Adare et al. (PHENIX Collaboration), PRL111 (2013) 202301

基底状態だけでなく

励起状態の消失温度も求めたい

両者に違いはあるのか(?)

QCD和則

M. A. Shifman, A. Vainshtein, and V. I. Zakharov, Nucl. Phys. B147, 385 (1979)

MEM

(積分値の情報からスペクトル関数を決定する方法)

M. Asakawa, T. Hatsuda, and Y. Nakahara, Prog. Part. Nucl. Phys. 46, 459 (2001)

Borel sum rulesのパラメータを複素数に一般化できる

K.J. Araki, K. Ohtani, P. Gubler, M. Oka, PTEP, 073B03(2014)

$$G^{\text{OPE}}(\mathcal{M}^2) = \frac{1}{\mathcal{M}^2} \int_0^\infty e^{-s/\mathcal{M}^2} \rho(s) ds$$

積分核の振る舞い

解析結果 (J/Ψ)

