Quark spectrum near the critical point of chiral transition

根本幸雄（聖マリアンナ医大）

共同研究者：北沢正清（阪大）、国広悌二（京大）
Our previous study on the quark spectrum

How do the fluctuations of the chiral condensate affect the quark spectrum near T_c?

- model: Nambu-Jona-Lasinio model (2-flavor, chiral limit)
- phase diagram of the chiral transition
 - 2nd order in the low density region
 - 1st order in the high density region

- spectrum of the fluctuations of the chiral condensate
 (Hatsuda-Kunihiro 85)
quark spectrum

quark self-energy: $\Sigma(p_0, p)$:

quark spectral function:

The scattering off the fluctuations forms the three-peak structure.

$E = 1.05T_C, \mu = 0$

Contour of the spectral function

red lines:

$\omega - |p| - \text{Re}\Sigma_+ = 0$
This study: **FINITE current quark mass**

- phase diagram of the chiral phase transition

 - current quark mass: 5.5 MeV

 ![Graph showing phase diagram](image)

 - The pseudo-critical line is determined from a maximum of the spectral function for $p=10$ MeV (dynamic chiral susceptibility).

- masses of the sigma, pion, and dynamical quark

 ![Graph showing masses](image)
The soft mode is not the sigma mode, but appears in the space-like region. (Fujii 03, Fujii-Ohtani 04)

What is the soft mode at CP?

The soft mode is not the sigma mode, but appears in the space-like region. (Fujii 03, Fujii-Ohtani 04)

scalar density fluc.
\[\langle \bar{q}q(p, p_0)\bar{q}q(0,0) \rangle \]

pseudo-scalar density fluc.
\[\langle \bar{q}i\gamma_5\tau q(p, p_0)\bar{q}i\gamma_5\tau q(0,0) \rangle \]

softneing

\[\mu = \mu_{CP}, T \sim T_{CP} \]

NOT softneing

sigma meson, \(m_\sigma \sim 2m_q \)

pion pole: not shown
pion dispersion relations in medium

\[\mu = \mu_{CP}, T \sim T_{CP} \]

\[\mu = 0, T \sim T_{PC} \text{ (pseudo-critical)} \]

\[m_q: \text{dynamically generated (constituent) quark mass (mean field)} \]

\[E_\pi(p) \neq \sqrt{p^2 + E_\pi(0)^2} \]

\[\text{c.f: fermion and gauge boson in HTL} \]
Quark spectrum near CP

• Quark spectral function ρ_\pm for $p=0$

$$\rho_\pm(p_0,0) = -\frac{1}{\pi} \text{Im} \frac{1}{p_0 + \mu \mp m_q - \Sigma_\pm(p_0,0)}$$

self-energy

$$\Sigma = \text{soft mode} + \text{pi mode}$$

- scalar fluc.
- space-like
- sigma mode
- time-like (cont.)

- pseudo-scalar fluc.
- time-like (pole or cont.)

- s, ps fluctuations

ex. pion pole contribution

$$\text{Im } \Sigma_+(0,p_0) \sim \int^\Lambda dq \left(1 - \frac{m}{E_q}\right) Z(E_\pi(q)) \delta(p_0 - E_q + \mu - E_\pi(q)) \left(1 + n(E_\pi(q)) - f(E_q - \mu)\right)$$

$$+ \left(1 - \frac{m}{E_q}\right) Z(E_\pi(q)) \delta(p_0 - E_q + \mu + E_\pi(q)) \left(n(E_\pi(q)) + f(E_q - \mu)\right)$$

$$+ \left(1 + \frac{m}{E_q}\right) Z(E_\pi(q)) \delta(p_0 + E_q + \mu - E_\pi(q)) \left(n(E_\pi(q)) + f(E_q + \mu)\right)$$

$$+ \left(1 + \frac{m}{E_q}\right) Z(E_\pi(q)) \delta(p_0 + E_q + \mu + E_\pi(q)) \left(1 + n(E_\pi(q)) - f(E_q + \mu)\right)$$

pion pole residue

BE dist. Func.

FD dist. Func.
Quark spectrum near the critical point

- **quark spectrum:**
 - one peak at 120 MeV
 - shift by coupling with the soft mode
 - the other peak at 80 MeV
 - but small residue ~ 0.01

- **self-energy**
 - large imaginary around 200 MeV
 - through the below process
 - $(0, \vec{p}_0)$
 - (\vec{q}, E_q)
 - on-shell
 - soft
 - $(-\vec{q}, p_0 - E_q)$
 - space-like

- **divergence at ±80 MeV**
 - van Hove singularities

\[\mu = \mu_{CP}, T \sim T_{CP} \]

\[
\begin{align*}
\rho_+ & \\
\text{residue: } 0.01 & \\
m_q & = 185
\end{align*}
\]
van Hove singularity

van Hove singularity = divergence of density of states

density of states $D(E)$

$$D(E)dE = \int_{E<E(p)<E+dE} d^3p \sim \frac{1}{|\nabla_p E(p)|} dE$$

$D(E)$ diverges when $E(p)$ has a maximum.

ex: plasmino in HTL

joint density of states

$$D(E)dE = \int_{E<E_f-E_i<E+dE} d^3p \sim \frac{1}{|\nabla_p (E_f - E_i)|} dE$$

$D(E)$ diverges when $E_f(p) - E_i(p)$ has a maximum.

present case