Effects of fluctuations for QCD phase diagram with isospin chemical potential

Kazuhiko Kamikado (Yukawa Institute, Kyoto Univ)

working with

Nils Strodthoff, Lorenz von Smekal and Jochen Wambach (TU Darmstadt)

QCD phase diagram

- Rich structure is expected.
- The sign problem exists for finite baryon-chemical potential thus Lattice calculation is not available.

 Three-dimensional phase diagram Temperature [T]
 Quark-chemical potential [μ]
 Isospin-chemical potential [μ_I]

$$\mu_{\rm u} = \mu + \mu_I$$
$$\mu_{\rm d} = \mu - \mu_I$$

- Quark Determinant is real (μ =0).
- The important sampling method is available.

M.Alford, A. Kapustin and F. Wilczek, Phys. Rev. D59, 054502 (1999).

Thursday, August 23, 12

Fluctuations beyond mean-field

$$U = -\frac{1}{2}\mu^2 \phi^2 + \lambda \phi^4$$
$$= a\phi' + b\phi'^2 + c\phi'^3 + d\phi'^4$$
$$b \ge 0$$

- Neglect Φ'^3 and Φ'^4 terms (mean-field approximation.) breaks down in a critical region (b ~ 0)
- Include the effects of c or d by solving functional-RG

quark-meson model with
$$\mu_{I}$$
 $\langle \sigma \rangle \neq 0$ $\langle \pi_{+} \rangle \neq 0$

$$\mathcal{L} = \bar{\psi} \left[i \partial \!\!\!/ + g(\sigma + i \gamma_{5} \vec{\pi} \cdot \vec{\tau}) + \mu_{I} \gamma_{0} \tau_{3} \right] \psi$$

$$+ \frac{1}{2} \partial \sigma \partial \sigma + \frac{1}{2} \partial \pi_{0} \partial \pi_{0} + \vec{\partial} \pi_{+} \vec{\partial} \pi_{-} \vec{\partial} \pi_{-} + (\partial_{0} + 2\mu_{I})(\pi_{+} + i\pi_{-})(\partial_{0} - 2\mu_{I})(\pi_{+} - i\pi_{-})$$

$$+ U(\sigma^{2} + \vec{\pi}^{2}) - c\sigma$$

Functional Renormalization Group (FRG)

 $\partial_k \Gamma_k^{(0,2)} = -2 \longrightarrow \left(\begin{array}{c} \Gamma_k^{(2,2)} \\ \Gamma_k^{(2,2)} \end{array} \right) + \left(\begin{array}{c} \Gamma_k^{(2,2)} \\ \Gamma_k^{(2,2)} \end{array} \right)$ $\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$

pproximation r

$$\Gamma_k^{LPA} = \text{Kinetic part} + \mathrm{U}_k(\sigma^2 + \pi_0^2, \pi_+^2 + \pi_-^2) - \mathrm{c}\sigma$$

C.Wetterich, Phys. Lett. B301, 90 (1993)

$$\begin{split} \Gamma_{abi}^{(0,3)} &\to \frac{\partial^3 \Gamma_{\text{LPA}}}{\partial \phi_i \partial \phi_a \partial \phi_b}, \quad \Gamma_{abij}^{(0,4)} \to \frac{\partial^4 \Gamma_{\text{LPA}}}{\partial \phi_i \partial \phi_j \partial \phi_a \partial \phi_b}, \\ \Gamma_i^{(2,1)} &\to \frac{\partial^3 \Gamma_{\text{LPA}}}{\partial \bar{\psi} \partial \psi \partial \phi_i}, \quad \Gamma_{ij}^{(2,2)} \to \frac{\partial^4 \Gamma_{\text{LPA}}}{\partial \bar{\psi} \partial \psi \partial \phi_i \partial \phi_j}. \end{split}$$

Pion masses

- Pion pole mass and pion curvature mass are difference at 20%.
- The pole mass well agree the onset of pion condensation (the difference is just at 3%).

Thursday, August 23, 12

Isospin density (T=0, μ=0)

the lattice data is from W. Detmold, K. Orginos and Z. Shi, arXiv:1205.4224 [hep-lat] χPT calculation is from D. T. Son and M. A. Stephanov, Phys. Rev. Lett. **86**, 592 (2001)

	А	В	С	FRG
$M_{\sigma} [{\rm MeV}]$	457	504	698	524

analytic form for linear sigma model

$$\rho_I(x,y) = 2f_\pi^2 m_\pi x \left(\frac{y^2 - 3}{y^2 - 1} - \frac{1}{x^4} + \frac{2}{y^2 - 1}x^2\right)$$
$$x = 2\mu_I/m_\pi, \quad y = m_\sigma/m_\pi$$

- Both QM and χ PT models reproduce the charge density of the LQCD near the onset of the pion condensation.
- The difference comes from the mass of sigma.

- quark dispersion relation in pion condensation phase
- up and down quarks are mixed by the charged pion condensation.

Results (T = 0)

μ - μ I phase diagram

• $\mu_I^c = 1/2 M_{\pi}$ is satisfied.

• Another 1st-order transition appear. Baryon-density jumps at the boundary.

Phase diagram

- Meson fluctuation hide TCP line.
- Ordinary chiral 1st-order phase boundary (red surface) is shrunken by the fluctuations.

Summary

- Silver Blaze relation is satisfied by the pion pole mass.
- The result of QM model agree with the Lattice QCD calculation.
- The result for higher μ_I depends on the sigma meson mass. We need to a light sigma mode.
- At low T, We have found the extra 1st-order phase transition at which quark density jumps.
- Meson fluctuations hide the TCP line which exists on the pion condensation surface.