Interweaving Chiral Spirals

Toru Kojo (Bielefeld U.)

with: K. Fukushima, Y. Hidaka, L. McLerran, R.D. Pisarski

\[\langle \bar{\psi} \psi \rangle = \Delta \cos(2p_F z) \]

\[\langle \bar{\psi} i \gamma_0 \gamma_z \psi \rangle = \Delta \sin(2p_F z) \]
Phase diagram at large N_c

Kojo-Hidaka-Fukushima-McLerran-Pisarski (2011)

Quark Gluon Plasma

- **Quarkyonic** (Confined)
- **Hadron**
- **Nuclear**

CSC (Deconfined)

- **Triple Point**
- **ICS**

T, ε, μ_q, N_c, Λ_{QCD}

Scale of Quark Matter Formation

Scale of Deconfinement (large gluon screening)
Phase diagram at large N_c (Confined) \Rightarrow Fermi sea

\Rightarrow IR gluons are cutoff: Deconf.

Kojo-Hidaka-Fukushima-McLerran-Pisarski (2011)

larger phase space \Rightarrow larger screening

scale of deconfinement (large gluon screening)

scale of quark matter formation
Chiral Restoration (CR) line

CR & Deconf. line (*Lattice QCD*)

(Kaczmarek et al. 11, Endrodi et al. 11)

Chemical freeze out line (*experiment*)

~ boundary of *dilute hadron gas*

~ $M_N / 3$
Chiral Restoration (CR) line

CR & Deconf. line (Lattice QCD)
(Kaczmarek et al. 11, Endrodi et al. 11)

Separation...?

CR line (models)
(homogeneous)
NJL, PNJL, Schwinger-Dyson. Conf. model

Chemical freeze out line (experiment)
~ boundary of dilute hadron gas

~ $M_N/3$

Quark Fermi sea is formed

T

μ_q

~ $M_N/3$
With inhomogeneous chiral condensate...

CR & Deconf. line (Lattice QCD)

CR line (models)
(inhomogeneous)
PNJL (Frankfurt-GSI)
NJL (StonyBrook, Kyoto,..)

Chemical freeze out line (experiment)

~ boundary of dilute hadron gas

T

μ_q

~ M_N/3
Candidates of Chiral Pairing (T=0)

- **Dirac Type** (E vs. P_z):
 - $P_{Tot}=0$ (uniform)
 - Kin. suppressed

- **Exciton Type** (E vs. P_z):
 - $P_{Tot}=0$ (uniform)
 - NOT favored by int.

- **Density wave** (E vs. P_z):
 - $P_{Tot}=2\mu$ (non-uniform)
 - favored by int.

Co-moving pairs condense
Single Chiral Spiral in z-direction

- **Projection:**
 \[\psi_{\pm} = \frac{1 \pm \gamma_0 \gamma_z}{2} \psi \]

- **Kin. terms:**
 \[L_{kin} \simeq \psi_{\pm}^\dagger \left(i(\partial_0 \mp \partial_z) + \mu \right) \psi_{\pm} + \psi_{\pm}^\dagger \frac{\partial_\perp^2}{2\mu} \psi_{\mp} \]

(near the Fermi surface)
longitudinal
transverse

(1+1) D chirality
Single Chiral Spiral in z-direction

\[\langle \bar{\psi}_+ \psi_- \rangle = \Delta e^{2ip_Fz} \]

\[\langle \bar{\psi}_- \psi_+ \rangle = \Delta e^{-2ip_Fz} \]

(\(\Delta \sim \Lambda_{\text{QCD}}^3 \))

Phase (due to finite mom.)
Single Chiral Spiral in z-direction

\[p \quad h \]
\[\langle \bar{\psi} \psi \rangle = \Delta e^{2ip_Fz} \]
\[\langle \bar{\psi} \psi \rangle = \Delta e^{-2ip_Fz} \]

(\(\Delta \sim \Lambda_{QCD}^3 \))

Linear combination:

Sum:
\[\langle \bar{\psi} \psi \rangle = \Delta \cos(2p_Fz) \]

P-odd
\[\langle \bar{\psi} i \gamma_0 \gamma_z \psi \rangle = \Delta \sin(2p_Fz) \]

2 CDWs → Single Chiral Spiral
Interweaving Chiral Spirals

theoretically possible?
Our study: (2+1) D Example

1. Divide the Fermi surface into N_p patch domains

 (N_p: variational parameter)

2. *Each* patch domain has one CS \rightarrow Compute it.

3. Compute interactions b.t.w. CSs.

4. Optimize $N_p \sim 1/\Theta$ \rightarrow Find the ground state
Energetic gain v.s. cost

- **Cost**: Deformation
 (dominant for large Θ)

- **Gain**: Mass gap origin

 Condensation effects

- **Cost**: Interactions among CSs
 (dominant for small Θ)

 Condensate – Condensate int.

 \rightarrow destroy one another, reducing gap

equal vol. (particle num.)

(Model dep. !!!)
A schematic model

Strength of interactions is determined by

Momentum transfer, NOT by quark momenta.

→ Even at high density, int. is strong for some processes.

Diagram Description:
- Gluon exchange
- Momentum transfer
- IR enhancement
- UV suppression
- Strength of interactions
Strength of interactions is determined by **Momentum transfer**, **NOT** by **quark momenta**.

→ Even at high density, **int. is strong for some processes**.

- Detailed form in the **deep IR region**: We don’t care
Consequences of the model

Contributions to the mass gap at leading N_c:

Inhomogeneous condensate

\[
\left\langle \bar{\psi}_R(\vec{k} + 2\vec{Q})\psi_L(\vec{k}) \right\rangle
\]

$\vec{k} + 2\vec{Q}$

Strong for small mom. transfer

Quark-condensate int. is

Local in momentum space!
Condensate & gap distributions

Condensate contribute to the quark mass gap only if their momentum domains are close one another.
Condensate & gap distributions

Condensate contribute to the quark mass gap only if their momentum domains are close one another.

Quarks Away from the patch boundary: feel only one CS (A) condensate in the gap eq.

The gap eq. can be solved within one patch treatment.
Condensate & gap distributions

Condensate contribute to the quark mass gap only if their momentum domains are close one another.

Quarks Near the patch boundaries:
- feel Two CSs (A & B)
- The gap eq. involve Two CSs background.

Results: reduction of the gap & condensate

Quarks Away from the patch boundary:
- feel only one CS (A)
- condensate in the gap eq.

The gap eq. can be solved within one patch treatment.
Energy Landscape (for fixed p_F)

\[\delta E_{\text{tot.}} = \frac{\Lambda_{\text{QCD}}}{p_F} \left(\frac{\Lambda_{\text{QCD}}}{p_F} \right)^{3/5} - M \times \Lambda_{\text{QCD}} Q \left(\frac{\Lambda_{\text{QCD}}}{p_F} \right)^{1/2} \]

- Gap too small
- Deformation energy too big

\[N_p \sim \frac{1}{\Theta} \sim \left(\frac{p_F}{\Lambda_{\text{QCD}}} \right)^{3/5} \]

- Patch num. depends upon density.
Model & consequences

\[p_F \]

Non-pert. quarks (gapped)

At MF (large \(N_c \))

Free quarks (Chiral symmetric)

Our model

\[G \]

strength

\[\Lambda_{QCD} \]
References

Quarkyonic Chiral Spirals (QCS)
Kojo-Hidaka-McLerran-Pisarski (NPA 843 (2010) 37)

Covering the Fermi surface with patches of QCSs
Kojo-Pisarski-Tsvelik (PRD 82 (2010) 074015)

A (1+1) dimensional example of Quarkyonic matter
Kojo (NPA 877 (2012) 70)

Interweaving Chiral Spirals (ICS)
Kojo-Hidaka-Fukushima-McLerran-Pisarski (NPA 875 (2012) 94)
Large N_c

Kojo-Hidaka-Fukushima-McLerran-Pisarski (2011)

Phase diagram at large N_c

- E_N
- M_N
- P_N

$\mu_B = N_c \mu_q$

- small change in μ_q
- large change in p_F
- $n_B \sim p_F^3$ change rapidly

Hadron

Nuclear

scale of quark matter formation

scale of deconfinement (large gluon screening)
A crude model with asymptotic freedom

- ex) Scalar - Scalar channel

\[
G \frac{1}{N_c} \int d^4x \int_{q,p,k} \left(\bar{\psi}(p+q) \psi(p) \right) \left(\bar{\psi}(k) \psi(k+q) \right) \theta_{p,k}
\]

\[
\theta_{p,k} \equiv \theta \left(\Lambda_f^2 - (\vec{p} - \vec{k})^2 \right)
\]
Gap distribution will be

$\sim \Lambda_{QCD}$

condensation region

small gap

Interference effects

$\sim Q\Theta$
Dim. reduction of integral eqs.

1, Virtual fluc. are limited within small mom. domain.

2, Quark energies are insensitive to small ΔkT.
 (due to flatness of Fermi surface in trans. direction)

e.g.) Schwinger-Dyson eq. insensitive to kT

\[
\Sigma(p) + \Sigma_m(p) = \int \frac{dk_4 dk_z d^2 k_T}{(2\pi)^4} \gamma_4 S(k) \gamma_4 \frac{\sigma}{|\vec{p} - \vec{k}|^4}
\]

\[
\int \frac{dk_4 dk_z}{(2\pi)^2} \gamma_4 S(k_4, k_z, \vec{0}_T) \gamma_4 \bigotimes \int \frac{d^2 k_T}{(2\pi)^2} \frac{\sigma}{|\vec{p} - \vec{k}|^4}
\]

• At leading order:

Dimensional reduction of Non-pert. self-consistent eqs:

4D “QCD” in Coulomb gauge \leftrightarrow 2D QCD in $A_1=0$ gauge
 (confining model)
Dictionary: $\mu = 0 & \mu \neq 0$ in $(1+1)D$

- $\mu \neq 0$ 2D QCD can be mapped onto $\mu = 0$ 2D QCD

$$\Phi = \exp\left(-i \mu z \Gamma^5\right) \Phi' : \text{Chiral rotation}$$

(Opposite shift of mom. for (+, -) moving states)

$$\overline{\Phi}\left[i \Gamma^\mu \partial_\mu + \mu \Gamma^0 \right] \Phi \rightarrow \overline{\Phi'} i \Gamma^\mu \partial_\mu \Phi'$$

($\mu \neq 0$) \quad ($\mu = 0$)

(due to special geometric property of 2D Fermi sea)

- Dictionary between $\mu = 0 & \mu \neq 0$ condensates:

$\mu = 0$

$$\langle \overline{\Phi'} \Phi' \rangle \rightarrow \cos(2 \mu z) \langle \overline{\Phi} \Phi \rangle - \sin(2 \mu z) \langle \overline{\Phi} i \Gamma^5 \Phi \rangle$$

($= 0$)

$\mu \neq 0$

$$\langle \overline{\Phi'} \Gamma_0 \Phi' \rangle \rightarrow \langle \overline{\Phi} \Gamma_0 \Phi \rangle + \frac{\mu}{2\pi}$$

(induced by anomaly)

“correct baryon number”
Coleman’s theorem?

- **Coleman’s theorem**: No Spontaneous sym. breaking in 2D

\[\langle e^{i\theta} \rangle \neq 0 \text{ (SSB)}\]

\[\langle e^{i\theta} \rangle = 0 \text{ (No SSB)}\]

IR divergence in (1+1)D phase dynamics

- Phase fluctuations belong to:

 - Excitations (physical pion spectra)
 - ground state properties (No pion spectra)
Quasi-long range order & large N_c

Local order parameters:

\[
\langle \overline{\Psi} + \Psi \rangle \sim \langle e^{i\sqrt{4\pi/N_c N_f} \phi} \rangle \otimes \langle \text{tr} g \rangle \otimes \langle \text{tr} h \rangle
\]

due to IR divergent phase dynamics

But this does not mean the system is in the usual symmetric phase!

Non-Local order parameters:

\[
\langle \overline{\Psi} + \Psi (x) \overline{\Psi} - \Psi (0) \rangle \sim \begin{cases}
\langle \overline{\Psi} + \Psi \rangle^2 & : \text{symmetric phase} \\
|x|^{2C/N_c} & : \text{long range order} \\
|x|^{-C/N_c} & : \text{quasi-long range order}
\end{cases}
\]

(including disconnected pieces)
A crude model with asymptotic freedom

- Color **Singlet**

- **IR** enhancement

- **UV** suppression

- ex) **Scalar - Scalar** channel

\[
\frac{G}{N_c} \int dx^0 \int_{q,p,k} \left(\bar{\psi}(p + q) \psi(p) \right) \left(\bar{\psi}(k) \psi(k + q) \right) \theta_{p,k}
\]
A crude model with asymptotic freedom

- ex) **Scalar - Scalar** channel

\[
\theta_{p,k} \equiv \theta \left(\Lambda_f^2 - (\vec{p} - \vec{k})^2 \right)
\]

\[
\frac{G}{N_c} \int dx^0 \int_{q,p,k} \left(\bar{\psi}(\vec{p} + \vec{q}) \psi(\vec{p}) \right) \left(\bar{\psi}(\vec{k}) \psi(\vec{k} + \vec{q}) \right) \theta_{p,k}
\]
Picking out one patch Lagrangian

\[\psi_i \] : momentum belonging to \(i \)-th patch

Kin. terms: trivial to decompose

\[\mathcal{L}^{\text{kin}} \rightarrow \sum_i \bar{\psi}_i i \phi \psi_i \equiv \sum_i \mathcal{L}_i^{\text{kin}} \]

Int. terms: Different patches can couple

\[\frac{G}{N_c} \sum_{i,j,k,l} \left((\bar{\psi}_i \psi_j)(\bar{\psi}_k \psi_l) + (\bar{\psi}_i i \gamma_5 \psi_j)(\bar{\psi}_k i \gamma_5 \psi_l) \right) \]

All fermions belong to the \(i \)-th patch

\[\mathcal{L} = \sum_i \mathcal{L}_i^{1\text{patch}} + \Delta \mathcal{L} \]
Dominant terms in One Patch, 1

“(1+1) D” “chirality” in \(i \)-th patch

\[
\Gamma_{i5} \equiv \gamma_0 \gamma_{i\parallel} \quad \psi_{i\pm} \equiv \frac{1 \pm \Gamma_{i5}}{2} \psi_i
\]

eigenvalue: Moving direction

Fact: “Chiral” Non-sym. terms \(\rightarrow \) suppressed by \(1/Q \)

ex) free theory

- **Longitudinal Kin. (Sym.)**
 \[
 \psi_{i\pm}^\dagger i(\partial_0 - \partial_{i\parallel})\psi_{i\pm}
 \]

- **Transverse Kin. (Non-Sym.)**
 \[
 \bar{\psi}_{i\pm} i\Phi \psi_{i\mp}
 \]

excitation energy

\[
\epsilon_{\text{free}}(\delta \vec{p}) = |\delta p_\parallel| + \frac{\delta p_\parallel^2 + p_\perp^2}{2Q} + \cdots
\]

momentum measured from Fermi surface
Dominant terms in One Patch, 2

\[\frac{1}{2} \left((\overline{\psi}\psi)^2 + (\overline{\psi} i \Gamma_5 \psi)^2 \right) \]

- **"Chiral" sym. part**

\[\frac{1}{2} \left((\overline{\psi}\psi)^2 \right) \]

IR dominant

(must be resummed \(\rightarrow\) MF)

- **Non - sym. part**

\[\frac{1}{2} \left((\overline{\psi}\psi)^2 - (\overline{\psi} i \Gamma_5 \psi)^2 \right) \]

\(1/Q\) suppressed

(can be treated in Pert.)

IR dominant : Unperturbed Lagrangian

Longitudinal Kin. + "Chiral" sym. 4-Fermi int.

\(\rightarrow\) Gap eq. can be reduced to (1+1) D

\(\quad (P_T\text{- factorization})\)

IR suppressed : Perturbation

Transverse Kin. + Non - sym. 4-Fermi int.
Quick Summary of 1-Patch results

At leading order of Λ_{QCD}/μ

- **Integral** eqs. such as Schwinger-Dyson, Bethe-Salpeter, can be reduced from $(2+1)$ D to $(1+1)$ D. cf) kT factorization

- **Chiral Spirals** emerge, generating large quark mass gap. (even larger than vac. mass gap)

- **Quark num.** is **spatially uniform**. (in contrast to chiral density)

Pert. corrections

- Quark num. **oscillation**.

- **CSs : Plane wave \rightarrow Solitonic**

approach to **Baryonic Crystals**
Consequences of form factor. 2

Dominant contributions to condensates: Low energy modes (for vacuum)

When $\mathbf{p} \to \infty$:

- \mathbf{k} must also go to ∞, so $\varepsilon(\mathbf{k}) \to \infty$.
- Phase space is finite: Nothing compensates denominator.

\[
\Sigma_m(\mathbf{p}) = \int \frac{d\mathbf{k}}{(2\pi)^2} \frac{\Sigma_m(\mathbf{k})}{2\varepsilon(\mathbf{k})} \theta_{p,k}
\]

Remark)
- finite density: Low energy modes appear near the Fermi surface.
Relevant domain of Non-pert. effects

Vac.

\[\Sigma_m(p) \] restored

\[\Lambda_c(\Lambda_f) \]

made of low energy quark - antiquark

Finite Density

\[\Sigma_m(p) \]

restored

(Fermi sea)

made of low energy quark - quark hole

\[|p| \]

\[p_F \]

restored
Quarkyonic Matter: Basic picture

- hadronic excitations
- Transport properties
- Phase structures (condensation) etc.

Quark Fermi sea + baryonic Fermi surface → Quarkyonic (hadronic)

Gluon sector is modified when screening becomes large:

\[\mu \sim \Lambda_{\text{QCD}} \]
small fraction

\[\mu \sim N_c^{1/2} \Lambda_{\text{QCD}} \]
large fraction

\[[\text{McLerran-Pisarski (2007)}] \]

Bulk properties:
- (EOS, Pressure, etc.)

Weakly int. quarks:
- Pauli-blocking,
- forming color singlet B.G.

Pauli-blocking.